Neural Orchestration for Multi-Agent Systems: A Deep Learning Framework for Optimal Agent Selection in Multi-Domain Task Environments
- URL: http://arxiv.org/abs/2505.02861v1
- Date: Sat, 03 May 2025 02:58:25 GMT
- Title: Neural Orchestration for Multi-Agent Systems: A Deep Learning Framework for Optimal Agent Selection in Multi-Domain Task Environments
- Authors: Kushagra Agrawal, Nisharg Nargund,
- Abstract summary: We propose MetaOrch, a neural orchestration framework for optimal agent selection in multi-domain task environments.<n>A novel fuzzy evaluation module scores agent responses along completeness, relevance, and confidence dimensions, generating soft supervision labels for training the orchestrator.<n>Experiments in simulated environments with heterogeneous agents demonstrate that our approach achieves 86.3% selection accuracy.
- Score: 0.8287206589886881
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-agent systems (MAS) are foundational in simulating complex real-world scenarios involving autonomous, interacting entities. However, traditional MAS architectures often suffer from rigid coordination mechanisms and difficulty adapting to dynamic tasks. We propose MetaOrch, a neural orchestration framework for optimal agent selection in multi-domain task environments. Our system implements a supervised learning approach that models task context, agent histories, and expected response quality to select the most appropriate agent for each task. A novel fuzzy evaluation module scores agent responses along completeness, relevance, and confidence dimensions, generating soft supervision labels for training the orchestrator. Unlike previous methods that hard-code agent-task mappings, MetaOrch dynamically predicts the most suitable agent while estimating selection confidence. Experiments in simulated environments with heterogeneous agents demonstrate that our approach achieves 86.3% selection accuracy, significantly outperforming baseline strategies including random selection and round-robin scheduling. The modular architecture emphasizes extensibility, allowing agents to be registered, updated, and queried independently. Results suggest that neural orchestration offers a powerful approach to enhancing the autonomy, interpretability, and adaptability of multi-agent systems across diverse task domains.
Related papers
- MetaAgent: Automatically Constructing Multi-Agent Systems Based on Finite State Machines [23.407716896592383]
We propose a finite state machine based framework that can automatically generate a multi-agent system.<n>Given a task description, MetaAgent will design a multi-agent system and polish it through an optimization algorithm.<n>When the multi-agent system is deployed, the finite state machine will control the agent's actions and the state transitions.
arXiv Detail & Related papers (2025-07-30T12:22:30Z) - AgentOrchestra: A Hierarchical Multi-Agent Framework for General-Purpose Task Solving [30.50203052125566]
projectname is a hierarchical multi-agent framework for general-purpose task solving.<n>projectname features a central planning agent that decomposes complex objectives and delegates sub-tasks to a team of specialized agents.<n>Each sub-agent is equipped with general programming and analytical tools, as well as abilities to tackle a wide range of real-world specific tasks.
arXiv Detail & Related papers (2025-06-14T13:45:37Z) - Multi-Agent Collaboration via Evolving Orchestration [61.93162413517026]
Large language models (LLMs) have achieved remarkable results across diverse downstream tasks, but their monolithic nature restricts scalability and efficiency in complex problem-solving.<n>We propose a puppeteer-style paradigm for LLM-based multi-agent collaboration, where a central orchestrator dynamically directs agents in response to evolving task states.<n> Experiments on closed- and open-domain scenarios show that this method achieves superior performance with reduced computational costs.
arXiv Detail & Related papers (2025-05-26T07:02:17Z) - Multiple Weaks Win Single Strong: Large Language Models Ensemble Weak Reinforcement Learning Agents into a Supreme One [28.264011412168347]
Model ensemble is a useful approach in reinforcement learning (RL) for training effective agents.<n>We propose LLM-Ens, a novel approach that enhances RL model ensemble with task-specific semantic understandings.
arXiv Detail & Related papers (2025-05-21T09:35:43Z) - Multi-Mission Tool Bench: Assessing the Robustness of LLM based Agents through Related and Dynamic Missions [12.218102495632937]
Large language models (LLMs) demonstrate strong potential as agents for tool invocation due to their advanced comprehension and planning capabilities.<n>We propose the Multi-Mission Tool Bench. In the benchmark, each test case comprises multiple interrelated missions.<n>We also propose a novel method to evaluate the accuracy and efficiency of agent decisions with dynamic decision trees.
arXiv Detail & Related papers (2025-04-03T14:21:33Z) - Multi-Agent Sampling: Scaling Inference Compute for Data Synthesis with Tree Search-Based Agentic Collaboration [81.45763823762682]
This work aims to bridge the gap by investigating the problem of data synthesis through multi-agent sampling.<n>We introduce Tree Search-based Orchestrated Agents(TOA), where the workflow evolves iteratively during the sequential sampling process.<n>Our experiments on alignment, machine translation, and mathematical reasoning demonstrate that multi-agent sampling significantly outperforms single-agent sampling as inference compute scales.
arXiv Detail & Related papers (2024-12-22T15:16:44Z) - Very Large-Scale Multi-Agent Simulation in AgentScope [112.98986800070581]
We develop new features and components for AgentScope, a user-friendly multi-agent platform.
We propose an actor-based distributed mechanism towards great scalability and high efficiency.
We also provide a web-based interface for conveniently monitoring and managing a large number of agents.
arXiv Detail & Related papers (2024-07-25T05:50:46Z) - EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms [55.77492625524141]
EvoAgent is a generic method to automatically extend specialized agents to multi-agent systems.<n>We show that EvoAgent can significantly enhance the task-solving capability of LLM-based agents.
arXiv Detail & Related papers (2024-06-20T11:49:23Z) - A Unified and Efficient Coordinating Framework for Autonomous DBMS
Tuning [34.85351481228439]
We propose a unified coordinating framework to efficiently utilize existing ML-based agents.
We show that it can effectively utilize different ML-based agents and find better configurations with 1.414.1X speedups on the workload execution time.
arXiv Detail & Related papers (2023-03-10T05:27:23Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Evolving Hierarchical Memory-Prediction Machines in Multi-Task
Reinforcement Learning [4.030910640265943]
Behavioural agents must generalize across a variety of environments and objectives over time.
We use genetic programming to evolve highly-generalized agents capable of operating in six unique environments from the control literature.
We show that emergent hierarchical structure in the evolving programs leads to multi-task agents that succeed by performing a temporal decomposition and encoding of the problem environments in memory.
arXiv Detail & Related papers (2021-06-23T21:34:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.