AgentOrchestra: A Hierarchical Multi-Agent Framework for General-Purpose Task Solving
- URL: http://arxiv.org/abs/2506.12508v2
- Date: Tue, 17 Jun 2025 07:08:27 GMT
- Title: AgentOrchestra: A Hierarchical Multi-Agent Framework for General-Purpose Task Solving
- Authors: Wentao Zhang, Ce Cui, Yilei Zhao, Rui Hu, Yang Liu, Yahui Zhou, Bo An,
- Abstract summary: projectname is a hierarchical multi-agent framework for general-purpose task solving.<n>projectname features a central planning agent that decomposes complex objectives and delegates sub-tasks to a team of specialized agents.<n>Each sub-agent is equipped with general programming and analytical tools, as well as abilities to tackle a wide range of real-world specific tasks.
- Score: 30.50203052125566
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in agent systems based on large language models (LLMs) have demonstrated strong capabilities in solving complex tasks. However, most current methods lack mechanisms for coordinating specialized agents and have limited ability to generalize to new or diverse domains. We introduce \projectname, a hierarchical multi-agent framework for general-purpose task solving that integrates high-level planning with modular agent collaboration. Inspired by the way a conductor orchestrates a symphony and guided by the principles of \textit{extensibility}, \textit{multimodality}, \textit{modularity}, and \textit{coordination}, \projectname features a central planning agent that decomposes complex objectives and delegates sub-tasks to a team of specialized agents. Each sub-agent is equipped with general programming and analytical tools, as well as abilities to tackle a wide range of real-world specific tasks, including data analysis, file operations, web navigation, and interactive reasoning in dynamic multimodal environments. \projectname supports flexible orchestration through explicit sub-goal formulation, inter-agent communication, and adaptive role allocation. We evaluate the framework on three widely used benchmark datasets covering various real-world tasks, searching web pages, reasoning over heterogeneous modalities, etc. Experimental results demonstrate that \projectname consistently outperforms flat-agent and monolithic baselines in task success rate and adaptability. These findings highlight the effectiveness of hierarchical organization and role specialization in building scalable and general-purpose LLM-based agent systems.
Related papers
- Parallelism Meets Adaptiveness: Scalable Documents Understanding in Multi-Agent LLM Systems [0.8437187555622164]
Large language model (LLM) agents have shown increasing promise for collaborative task completion.<n>Existing multi-agent frameworks often rely on static, fixed roles, and limited inter-agent communication.<n>This paper proposes a coordination framework that enables adaptiveness through three core mechanisms.
arXiv Detail & Related papers (2025-07-22T22:42:51Z) - AnyMAC: Cascading Flexible Multi-Agent Collaboration via Next-Agent Prediction [70.60422261117816]
We propose a new framework that rethinks multi-agent coordination through a sequential structure rather than a graph structure.<n>Our method focuses on two key directions: (1) Next-Agent Prediction, which selects the most suitable agent role at each step, and (2) Next-Context Selection, which enables each agent to selectively access relevant information from any previous step.
arXiv Detail & Related papers (2025-06-21T18:34:43Z) - Cross-Task Experiential Learning on LLM-based Multi-Agent Collaboration [63.90193684394165]
We introduce multi-agent cross-task experiential learning (MAEL), a novel framework that endows LLM-driven agents with explicit cross-task learning and experience accumulation.<n>During the experiential learning phase, we quantify the quality for each step in the task-solving workflow and store the resulting rewards.<n>During inference, agents retrieve high-reward, task-relevant experiences as few-shot examples to enhance the effectiveness of each reasoning step.
arXiv Detail & Related papers (2025-05-29T07:24:37Z) - Multi-Agent Collaboration via Evolving Orchestration [61.93162413517026]
Large language models (LLMs) have achieved remarkable results across diverse downstream tasks, but their monolithic nature restricts scalability and efficiency in complex problem-solving.<n>We propose a puppeteer-style paradigm for LLM-based multi-agent collaboration, where a central orchestrator dynamically directs agents in response to evolving task states.<n> Experiments on closed- and open-domain scenarios show that this method achieves superior performance with reduced computational costs.
arXiv Detail & Related papers (2025-05-26T07:02:17Z) - HALO: Hierarchical Autonomous Logic-Oriented Orchestration for Multi-Agent LLM Systems [1.1930434318557155]
We introduce HALO, a multi-agent collaboration framework based on a hierarchical reasoning architecture.<n>Specifically, we incorporate a high-level planning agent for task decomposition, mid-level role-design agents for subtask-specific agent instantiation, and low-level inference agents for subtask execution.<n>As the majority of users lack expertise in prompt engineering, we leverage an Adaptive Prompt Refinement module to transform raw queries into task-specific prompts.
arXiv Detail & Related papers (2025-05-17T04:14:03Z) - Neural Orchestration for Multi-Agent Systems: A Deep Learning Framework for Optimal Agent Selection in Multi-Domain Task Environments [0.8287206589886881]
We propose MetaOrch, a neural orchestration framework for optimal agent selection in multi-domain task environments.<n>A novel fuzzy evaluation module scores agent responses along completeness, relevance, and confidence dimensions, generating soft supervision labels for training the orchestrator.<n>Experiments in simulated environments with heterogeneous agents demonstrate that our approach achieves 86.3% selection accuracy.
arXiv Detail & Related papers (2025-05-03T02:58:25Z) - MultiAgentBench: Evaluating the Collaboration and Competition of LLM agents [59.825725526176655]
Large Language Models (LLMs) have shown remarkable capabilities as autonomous agents.<n>Existing benchmarks either focus on single-agent tasks or are confined to narrow domains, failing to capture the dynamics of multi-agent coordination and competition.<n>We introduce MultiAgentBench, a benchmark designed to evaluate LLM-based multi-agent systems across diverse, interactive scenarios.
arXiv Detail & Related papers (2025-03-03T05:18:50Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
We propose AOP, a novel framework for agent-oriented planning in multi-agent systems.<n>In this study, we identify three critical design principles of agent-oriented planning, including solvability, completeness, and non-redundancy.<n> Extensive experiments demonstrate the advancement of AOP in solving real-world problems compared to both single-agent systems and existing planning strategies for multi-agent systems.
arXiv Detail & Related papers (2024-10-03T04:07:51Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
Existing multi-agent frameworks often struggle with integrating diverse capable third-party agents.
We propose the Internet of Agents (IoA), a novel framework that addresses these limitations.
IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control.
arXiv Detail & Related papers (2024-07-09T17:33:24Z) - TDAG: A Multi-Agent Framework based on Dynamic Task Decomposition and Agent Generation [41.21899915378596]
We propose a multi-agent framework based on dynamic Task Decomposition and Agent Generation (TDAG)<n>This framework dynamically decomposes complex tasks into smaller subtasks and assigns each to a specifically generated subagent.<n>ItineraryBench is designed to assess agents' abilities in memory, planning, and tool usage across tasks of varying complexity.
arXiv Detail & Related papers (2024-02-15T18:27:37Z) - Agents meet OKR: An Object and Key Results Driven Agent System with
Hierarchical Self-Collaboration and Self-Evaluation [25.308341461293857]
OKR-Agent is designed to enhance the capabilities of Large Language Models (LLMs) in task-solving.
Our framework includes two novel modules: hierarchical Objects and Key Results generation and multi-level evaluation.
arXiv Detail & Related papers (2023-11-28T06:16:30Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
We propose a multi-agent framework framework that can collaboratively adjust its composition as a greater-than-the-sum-of-its-parts system.
Our experiments demonstrate that framework framework can effectively deploy multi-agent groups that outperform a single agent.
In view of these behaviors, we discuss some possible strategies to leverage positive ones and mitigate negative ones for improving the collaborative potential of multi-agent groups.
arXiv Detail & Related papers (2023-08-21T16:47:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.