論文の概要: The Multimodal Paradox: How Added and Missing Modalities Shape Bias and Performance in Multimodal AI
- arxiv url: http://arxiv.org/abs/2505.03020v1
- Date: Mon, 05 May 2025 20:42:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-07 18:50:11.126948
- Title: The Multimodal Paradox: How Added and Missing Modalities Shape Bias and Performance in Multimodal AI
- Title(参考訳): マルチモーダル・パラドックス:マルチモーダルAIにおけるモーダリティの付加と欠落のバイアスとパフォーマンス
- Authors: Kishore Sampath, Pratheesh, Ayaazuddin Mohammad, Resmi Ramachandranpillai,
- Abstract要約: マルチモーダル学習は、高い意思決定において、単調な学習よりも優れていることが証明されている。
パフォーマンス向上は、マルチモーダルシステムを評価するためのゴールドスタンダードのままだが、バイアスやロバスト性に関する懸念はしばしば見過ごされている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal learning, which integrates diverse data sources such as images, text, and structured data, has proven superior to unimodal counterparts in high-stakes decision-making. However, while performance gains remain the gold standard for evaluating multimodal systems, concerns around bias and robustness are frequently overlooked. In this context, this paper explores two key research questions (RQs): (i) RQ1 examines whether adding a modality con-sistently enhances performance and investigates its role in shaping fairness measures, assessing whether it mitigates or amplifies bias in multimodal models; (ii) RQ2 investigates the impact of missing modalities at inference time, analyzing how multimodal models generalize in terms of both performance and fairness. Our analysis reveals that incorporating new modalities during training consistently enhances the performance of multimodal models, while fairness trends exhibit variability across different evaluation measures and datasets. Additionally, the absence of modalities at inference degrades performance and fairness, raising concerns about its robustness in real-world deployment. We conduct extensive experiments using multimodal healthcare datasets containing images, time series, and structured information to validate our findings.
- Abstract(参考訳): 画像やテキスト,構造化データなどの多様なデータソースを統合したマルチモーダル学習は,高精度な意思決定において,非モーダル学習よりも優れていることが証明されている。
しかし、マルチモーダルシステム評価における性能向上は依然としてゴールドスタンダードであるが、バイアスやロバスト性に関する懸念はしばしば見過ごされている。
本稿では,2つの重要な研究課題(RQ)について考察する。
(i)RQ1は、モダリティの付加がパフォーマンスを継続的に向上させるか否かを検証し、マルチモーダルモデルの偏見を緩和又は増幅するかどうかを評価し、公正度対策の策定におけるその役割について検討する。
(II)RQ2は,マルチモーダルモデルがどのように一般化するかを,性能と公平性の両方の観点から分析し,欠落モードの影響について検討する。
分析の結果,学習中に新たなモダリティを取り入れることで,マルチモーダルモデルの性能が一貫して向上し,公正度傾向は異なる評価尺度やデータセットの多様性を示すことが明らかとなった。
さらに、推論におけるモダリティの欠如は、パフォーマンスと公正性を低下させ、実際のデプロイメントにおける堅牢性に対する懸念を提起する。
我々は、画像、時系列、構造化情報を含むマルチモーダル医療データセットを用いて広範な実験を行い、その結果を検証する。
関連論文リスト
- PAL: Prompting Analytic Learning with Missing Modality for Multi-Modal Class-Incremental Learning [42.00851701431368]
マルチモーダルクラスインクリメンタルラーニング(MMCIL)は、音声と視覚、画像とテキストのペアのようなマルチモーダルデータを活用する。
重要な課題は、漸進的な学習フェーズにおけるモダリティの欠如である。
PALは, MMCILに適合した, モダリティの欠如を前提とした, 斬新なフレームワークである。
論文 参考訳(メタデータ) (2025-01-16T08:04:04Z) - Asymmetric Reinforcing against Multi-modal Representation Bias [59.685072206359855]
マルチモーダル表現バイアス(ARM)に対する非対称強化法を提案する。
我々のARMは、条件付き相互情報を通じて支配的なモダリティを表現する能力を維持しながら、弱いモダリティを動的に強化する。
我々はマルチモーダル学習の性能を著しく改善し、不均衡なマルチモーダル学習の軽減に顕著な進展をもたらした。
論文 参考訳(メタデータ) (2025-01-02T13:00:06Z) - The Curse of Multi-Modalities: Evaluating Hallucinations of Large Multimodal Models across Language, Visual, and Audio [118.75449542080746]
本稿では,大規模マルチモーダルモデル(LMM)における幻覚に関する最初の系統的研究について述べる。
本研究は,幻覚に対する2つの重要な要因を明らかにした。
私たちの研究は、モダリティ統合の不均衡やトレーニングデータからのバイアスなど、重要な脆弱性を強調し、モダリティ間のバランスの取れた学習の必要性を強調した。
論文 参考訳(メタデータ) (2024-10-16T17:59:02Z) - Assessing Modality Bias in Video Question Answering Benchmarks with Multimodal Large Language Models [12.841405829775852]
我々は、VidQAベンチマークとデータセットのバイアスを特定するために、MIS(Modality importance score)を導入する。
また,最新のMLLMを用いてモダリティの重要度を推定する手法を提案する。
以上の結果から,既存のデータセットでは,モダリティの不均衡による情報統合が効果的に行われていないことが示唆された。
論文 参考訳(メタデータ) (2024-08-22T23:32:42Z) - Missing Modality Prediction for Unpaired Multimodal Learning via Joint Embedding of Unimodal Models [6.610033827647869]
実世界のシナリオでは、完全なマルチモーダルデータを一貫して取得することは重大な課題である。
これはしばしば、特定のモダリティのデータが欠落しているモダリティの問題につながる。
自己教師型共同埋め込み学習手法を用いて, パラメータ効率のよい未学習モデルの微調整を行う新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-17T14:44:25Z) - HEMM: Holistic Evaluation of Multimodal Foundation Models [91.60364024897653]
マルチモーダル・ファンデーション・モデルは、画像、ビデオ、オーディオ、その他の知覚モダリティと共にテキストをホリスティックに処理することができる。
モデリング決定、タスク、ドメインの範囲を考えると、マルチモーダル基盤モデルの進歩を特徴づけ、研究することは困難である。
論文 参考訳(メタデータ) (2024-07-03T18:00:48Z) - Beyond Unimodal Learning: The Importance of Integrating Multiple Modalities for Lifelong Learning [23.035725779568587]
ディープニューラルネットワーク(DNN)におけるマルチモーダル性の役割と相互作用について検討する。
以上の結果から,複数のビューと相補的な情報を複数のモーダルから活用することで,より正確かつ堅牢な表現を学習できることが示唆された。
本稿では,各モーダルにおけるデータ点間の関係構造的類似性を利用して,異なるモーダルからの情報の統合と整合化を行う手法を提案する。
論文 参考訳(メタデータ) (2024-05-04T22:02:58Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
教師なしの事前訓練は骨格に基づく行動理解において大きな成功を収めた。
我々はUmURLと呼ばれる統一マルチモーダル非教師なし表現学習フレームワークを提案する。
UmURLは効率的な早期融合戦略を利用して、マルチモーダル機能を単一ストリームで共同でエンコードする。
論文 参考訳(メタデータ) (2023-11-06T13:56:57Z) - Quantifying & Modeling Multimodal Interactions: An Information
Decomposition Framework [89.8609061423685]
本稿では,入力モーダル性と出力タスクを関連付けた冗長性,特異性,シナジーの度合いを定量化する情報理論手法を提案する。
PID推定を検証するために、PIDが知られている合成データセットと大規模マルチモーダルベンチマークの両方で広範な実験を行う。
本研究では,(1)マルチモーダルデータセット内の相互作用の定量化,(2)マルチモーダルモデルで捉えた相互作用の定量化,(3)モデル選択の原理的アプローチ,(4)実世界のケーススタディの3つにその有用性を示す。
論文 参考訳(メタデータ) (2023-02-23T18:59:05Z) - Adaptive Contrastive Learning on Multimodal Transformer for Review
Helpfulness Predictions [40.70793282367128]
本稿では,MRHP(Multimodal Review Helpfulness Prediction)問題に対するマルチモーダルコントラスト学習を提案する。
さらに,コントラスト学習における適応重み付け方式を提案する。
最後に,マルチモーダルデータの不整合性に対処するマルチモーダルインタラクションモジュールを提案する。
論文 参考訳(メタデータ) (2022-11-07T13:05:56Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
マルチモーダル分類の文脈におけるモダリティバイアス問題について検討する。
本稿では,各ラベルの特徴空間を適応的に学習するプラグアンドプレイ損失関数法を提案する。
本手法は, ベースラインに比べ, 顕著な性能向上を実現している。
論文 参考訳(メタデータ) (2022-02-25T13:47:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。