論文の概要: Robustly Invertible Nonlinear Dynamics and the BiLipREN: Contracting Neural Models with Contracting Inverses
- arxiv url: http://arxiv.org/abs/2505.03069v1
- Date: Mon, 05 May 2025 23:27:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-07 18:50:11.146574
- Title: Robustly Invertible Nonlinear Dynamics and the BiLipREN: Contracting Neural Models with Contracting Inverses
- Title(参考訳): 頑健な可逆非線形ダイナミクスとBiLipREN:縮退逆を持つ縮退ニューラルモデル
- Authors: Yurui Zhang, Ruigang Wang, Ian R. Manchester,
- Abstract要約: 本研究では, 非線形力学系の可逆性について, 収縮解析と漸進安定性解析の観点から検討する。
本稿では,新しい可逆的リカレントニューラルモデルBiLipRENを提案する。
- 参考スコア(独自算出の注目度): 2.0277446818410994
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the invertibility of nonlinear dynamical systems from the perspective of contraction and incremental stability analysis and propose a new invertible recurrent neural model: the BiLipREN. In particular, we consider a nonlinear state space model to be robustly invertible if an inverse exists with a state space realisation, and both the forward model and its inverse are contracting, i.e. incrementally exponentially stable, and Lipschitz, i.e. have bounded incremental gain. This property of bi-Lipschitzness implies both robustness in the sense of sensitivity to input perturbations, as well as robust distinguishability of different inputs from their corresponding outputs, i.e. the inverse model robustly reconstructs the input sequence despite small perturbations to the initial conditions and measured output. Building on this foundation, we propose a parameterization of neural dynamic models: bi-Lipschitz recurrent equilibrium networks (biLipREN), which are robustly invertible by construction. Moreover, biLipRENs can be composed with orthogonal linear systems to construct more general bi-Lipschitz dynamic models, e.g., a nonlinear analogue of minimum-phase/all-pass (inner/outer) factorization. We illustrate the utility of our proposed approach with numerical examples.
- Abstract(参考訳): 本稿では, 非線形力学系の可逆性について, 収縮解析と漸進安定性解析の観点から検討し, 新たな可逆的リカレントニューラルモデルであるBiLipRENを提案する。
特に、非線形状態空間モデルが、状態空間実現とともに逆が存在する場合、強可逆であると考え、フォワードモデルとその逆は共に収縮し、すなわち指数関数的に指数的に安定し、リプシッツ(英語版)(Lipschitz)は漸進ゲインを有界化している。
この双Lipschitznessの特性は、入力摂動に対する感受性の感覚における頑健さと、対応する出力から異なる入力の頑健な識別性、すなわち、逆モデルが初期条件への小さな摂動と測定された出力に拘わらず、入力シーケンスを頑健に再構成することを意味する。
この基礎の上に構築されたBi-Lipschitzリカレント平衡ネットワーク (biLipREN) のパラメータ化を提案する。
さらに、biLipRENsは直交線型系で構成することができ、より一般的なバイリプシッツ力学モデル、例えば最小位相/全パス(インナー/アウター)分解の非線形アナログを構成することができる。
提案手法の有効性を数値例で説明する。
関連論文リスト
- Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間列を表現するために設計された新しい深部力学モデルを提案する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
振動系, ビデオ, 実世界の状態系列(MuJoCo)の実験結果から, 学習可能なエネルギーベース先行モデルの方が既存のモデルより優れていることが示された。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - Non Commutative Convolutional Signal Models in Neural Networks:
Stability to Small Deformations [111.27636893711055]
非可換畳み込みフィルタのフィルタ特性と安定性について検討する。
この結果は,グループニューラルネットワーク,マルチグラフニューラルネットワーク,四元系ニューラルネットワークに直接影響する。
論文 参考訳(メタデータ) (2023-10-05T20:27:22Z) - Edge of stability echo state networks [5.888495030452654]
Echo State Networks (ESN) は、Echo State Property (ESP) の原則の下で動作する時系列処理モデルである。
We introduced a new ESN architecture, the Edge of stability Echo State Network (ES$2$N)
論文 参考訳(メタデータ) (2023-08-05T15:49:25Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Second-order regression models exhibit progressive sharpening to the
edge of stability [30.92413051155244]
2次元の二次目標に対して、2階回帰モデルでは、安定性の端とわずかに異なる値に対して進行的なシャープ化を示すことを示す。
より高次元では、モデルはニューラルネットワークの特定の構造がなくても、概して同様の振る舞いを示す。
論文 参考訳(メタデータ) (2022-10-10T17:21:20Z) - Learning and Inference in Sparse Coding Models with Langevin Dynamics [3.0600309122672726]
本稿では確率的潜在変数モデルで推論と学習が可能なシステムについて述べる。
ランゲヴィン力学を用いて潜伏変数を推論する連続時間方程式を導出することにより、スパース符号化モデルのこのアイデアを実証する。
ランゲヴィン力学は、L1ノルムが小さいのに対して、潜伏変数をゼロにすることを推奨する'L0スパース'系において、後続分布からサンプリングする効率的な手順をもたらすことを示す。
論文 参考訳(メタデータ) (2022-04-23T23:16:47Z) - Convolutional Filtering and Neural Networks with Non Commutative
Algebras [153.20329791008095]
本研究では,非可換畳み込みニューラルネットワークの一般化について検討する。
非可換畳み込み構造は作用素空間上の変形に対して安定であることを示す。
論文 参考訳(メタデータ) (2021-08-23T04:22:58Z) - Recurrent Equilibrium Networks: Flexible Dynamic Models with Guaranteed
Stability and Robustness [3.2872586139884623]
本稿では,機械学習,システム識別,制御における再帰平衡ネットワーク(REN)を提案する。
RENはRNの二次ベクトルによって直接パラメータ化され、安定性とロバスト性はパラメータ制約なしで確保される。
また,データ駆動型非線形オブザーバの設計と安定性保証による制御への応用について述べる。
論文 参考訳(メタデータ) (2021-04-13T05:09:41Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Lipschitz Recurrent Neural Networks [100.72827570987992]
我々のリプシッツ再帰ユニットは、他の連続時間RNNと比較して、入力やパラメータの摂動に対してより堅牢であることを示す。
実験により,Lipschitz RNNは,ベンチマークタスクにおいて,既存のリカレントユニットよりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-06-22T08:44:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。