Assessing and Enhancing the Robustness of LLM-based Multi-Agent Systems Through Chaos Engineering
- URL: http://arxiv.org/abs/2505.03096v1
- Date: Tue, 06 May 2025 01:13:14 GMT
- Title: Assessing and Enhancing the Robustness of LLM-based Multi-Agent Systems Through Chaos Engineering
- Authors: Joshua Owotogbe,
- Abstract summary: This study explores the application of chaos engineering to enhance the robustness of Large Language Model-Based Multi-Agent Systems (LLM-MAS) in production-like environments under real-world conditions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study explores the application of chaos engineering to enhance the robustness of Large Language Model-Based Multi-Agent Systems (LLM-MAS) in production-like environments under real-world conditions. LLM-MAS can potentially improve a wide range of tasks, from answering questions and generating content to automating customer support and improving decision-making processes. However, LLM-MAS in production or preproduction environments can be vulnerable to emergent errors or disruptions, such as hallucinations, agent failures, and agent communication failures. This study proposes a chaos engineering framework to proactively identify such vulnerabilities in LLM-MAS, assess and build resilience against them, and ensure reliable performance in critical applications.
Related papers
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models [8.912091484067508]
We introduce SV-LLM, a novel multi-agent assistant system designed to automate and enhance system-on-chip (SoC) security verification.<n>By integrating specialized agents for tasks like verification question answering, security asset identification, threat modeling, test plan and property generation, vulnerability detection, and simulation-based bug validation, SV-LLM streamlines the workflow.<n>The system aims to reduce manual intervention, improve accuracy, and accelerate security analysis, supporting proactive identification and mitigation of risks early in the design cycle.
arXiv Detail & Related papers (2025-06-25T13:31:13Z) - Enhancing Reasoning Capabilities of Small Language Models with Blueprints and Prompt Template Search [18.317836598695706]
Small language models (SLMs) offer promising and efficient alternatives to large language models (LLMs)<n>Our framework integrates a prompt template search mechanism to mitigate the SLMs' sensitivity to prompt variations.<n>Our approach improves the reasoning capabilities of SLMs without increasing model size or requiring additional training.
arXiv Detail & Related papers (2025-06-10T10:30:43Z) - Heterogeneous Group-Based Reinforcement Learning for LLM-based Multi-Agent Systems [25.882461853973897]
We propose Multi-Agent Heterogeneous Group Policy Optimization (MHGPO), which guides policy updates by estimating relative reward advantages.<n>MHGPO eliminates the need for Critic networks, enhancing stability and reducing computational overhead.<n>We also introduce three group rollout sampling strategies that trade off between efficiency and effectiveness.
arXiv Detail & Related papers (2025-06-03T10:17:19Z) - Comprehensive Vulnerability Analysis is Necessary for Trustworthy LLM-MAS [28.69485468744812]
Large Language Model-based Multi-Agent Systems (LLM-MAS) are increasingly deployed in high-stakes applications.<n>LLM-MAS introduces unique attack surfaces through inter-agent communication, trust relationships, and tool integration.<n>This paper presents a systematic framework for vulnerability analysis of LLM-MAS that unifies diverse research.
arXiv Detail & Related papers (2025-06-02T01:46:15Z) - MLE-Dojo: Interactive Environments for Empowering LLM Agents in Machine Learning Engineering [57.156093929365255]
Gym-style framework for systematically reinforcement learning, evaluating, and improving autonomous large language model (LLM) agents.<n>MLE-Dojo covers diverse, open-ended MLE tasks carefully curated to reflect realistic engineering scenarios.<n>Its fully executable environment supports comprehensive agent training via both supervised fine-tuning and reinforcement learning.
arXiv Detail & Related papers (2025-05-12T17:35:43Z) - A Trustworthy Multi-LLM Network: Challenges,Solutions, and A Use Case [59.58213261128626]
We propose a blockchain-enabled collaborative framework that connects multiple Large Language Models (LLMs) into a Trustworthy Multi-LLM Network (MultiLLMN)<n>This architecture enables the cooperative evaluation and selection of the most reliable and high-quality responses to complex network optimization problems.
arXiv Detail & Related papers (2025-05-06T05:32:46Z) - LLMpatronous: Harnessing the Power of LLMs For Vulnerability Detection [0.0]
Large Language Models (LLMs) for vulnerability detection presents unique challenges.<n>Previous attempts employing machine learning models for vulnerability detection have proven ineffective.<n>We propose a robust AI-driven approach focused on mitigating these limitations.
arXiv Detail & Related papers (2025-04-25T15:30:40Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Solution-oriented Agent-based Models Generation with Verifier-assisted
Iterative In-context Learning [10.67134969207797]
Agent-based models (ABMs) stand as an essential paradigm for proposing and validating hypothetical solutions or policies.
Large language models (LLMs) encapsulating cross-domain knowledge and programming proficiency could potentially alleviate the difficulty of this process.
We present SAGE, a general solution-oriented ABM generation framework designed for automatic modeling and generating solutions for targeted problems.
arXiv Detail & Related papers (2024-02-04T07:59:06Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
Large Language Models (LLMs) are becoming increasingly smart and autonomous, targeting real-world pragmatic missions beyond traditional NLP tasks.
We present AgentBench, a benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities.
arXiv Detail & Related papers (2023-08-07T16:08:11Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
We investigate the potential misuse of modern Large Language Models (LLMs) for generating credible-sounding misinformation.
Our study reveals that LLMs can act as effective misinformation generators, leading to a significant degradation in the performance of Open-Domain Question Answering (ODQA) systems.
arXiv Detail & Related papers (2023-05-23T04:10:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.