論文の概要: Enhancing Glass Defect Detection with Diffusion Models: Addressing Imbalanced Datasets in Manufacturing Quality Control
- arxiv url: http://arxiv.org/abs/2505.03134v1
- Date: Tue, 06 May 2025 03:16:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-07 18:50:11.172374
- Title: Enhancing Glass Defect Detection with Diffusion Models: Addressing Imbalanced Datasets in Manufacturing Quality Control
- Title(参考訳): 拡散モデルによるガラス欠陥検出の強化:製造品質管理における不均衡データセットへの対応
- Authors: Sajjad Rezvani Boroujeni, Hossein Abedi, Tom Bush,
- Abstract要約: 工業用ガラス製造における視覚欠陥検出は、欠陥製品の頻度が低いため、依然として重要な課題である。
本稿では, 差動拡散確率モデル(DDPM)を用いて, データ拡張のための合成欠陥ガラス製品画像を生成する手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Visual defect detection in industrial glass manufacturing remains a critical challenge due to the low frequency of defective products, leading to imbalanced datasets that limit the performance of deep learning models and computer vision systems. This paper presents a novel approach using Denoising Diffusion Probabilistic Models (DDPMs) to generate synthetic defective glass product images for data augmentation, effectively addressing class imbalance issues in manufacturing quality control and automated visual inspection. The methodology significantly enhances image classification performance of standard CNN architectures (ResNet50V2, EfficientNetB0, and MobileNetV2) in detecting anomalies by increasing the minority class representation. Experimental results demonstrate substantial improvements in key machine learning metrics, particularly in recall for defective samples across all tested deep neural network architectures while maintaining perfect precision. The most dramatic improvement was observed in ResNet50V2's overall classification accuracy, which increased from 78 percent to 93 percent when trained with the augmented data. This work provides a scalable, cost-effective approach to enhancing automated defect detection in glass manufacturing that can potentially be extended to other industrial quality assurance systems and industries with similar class imbalance challenges.
- Abstract(参考訳): 工業用ガラス製造における視覚欠陥検出は、欠陥製品の頻度が低いため、ディープラーニングモデルとコンピュータビジョンシステムの性能を制限する不均衡なデータセットが生じるため、依然として重要な課題である。
本稿では, 製造品質管理と自動視覚検査におけるクラス不均衡問題に効果的に対処するため, DDPM(Denoising Diffusion Probabilistic Models)を用いて, データ拡張のための合成欠陥ガラス製品画像を生成する手法を提案する。
この手法は,少数クラス表現の増大による異常検出において,標準CNNアーキテクチャ(ResNet50V2,EfficientNetB0,MobileNetV2)の画像分類性能を著しく向上させる。
実験結果は、重要な機械学習メトリクス、特に、完全な精度を維持しながら、テスト対象のディープニューラルネットワークアーキテクチャ全体にわたる欠陥サンプルのリコールにおいて、大幅に改善されている。
ResNet50V2の全体的な分類精度は78%から93%に向上した。
この作業は、ガラス製造における自動欠陥検出を強化するためのスケーラブルで費用対効果の高いアプローチを提供する。
関連論文リスト
- Wafer Map Defect Classification Using Autoencoder-Based Data Augmentation and Convolutional Neural Network [4.8748194765816955]
本研究では、自己エンコーダに基づくデータ拡張技術と畳み込みニューラルネットワーク(CNN)を組み合わせた新しい手法を提案する。
提案手法は,ランダムフォレスト,SVM,ロジスティック回帰をそれぞれ19%,21%,27%以上,98.56%の分類精度を達成している。
論文 参考訳(メタデータ) (2024-11-17T10:19:54Z) - Utilizing Generative Adversarial Networks for Image Data Augmentation and Classification of Semiconductor Wafer Dicing Induced Defects [0.21990652930491852]
半導体製造において、ウエハダイシングプロセスは中心的でありながら、収率を著しく損なう欠陥に対して脆弱である。
深層ニューラルネットワーク(Deep Neural Network)は、半自動視覚検査における最先端技術である。
本稿では, 半導体ウェハダイシングによる欠陥の画像データの増大と分類にGAN(Generative Adversarial Network)の適用について検討する。
論文 参考訳(メタデータ) (2024-07-24T20:44:16Z) - Autoencoder-Based Visual Anomaly Localization for Manufacturing Quality
Control [0.0]
本稿では,教師なしクラス選択による欠陥ローカライズオートエンコーダを提案する。
選択された欠陥のクラスは、人工的な欠陥をシミュレートするために天然の野生のテクスチャで強化される。
提案手法は, 家具用メラミン面板における品質欠陥の高精度かつ高精度な位置決めを行うことで, 有望な結果を示すものである。
論文 参考訳(メタデータ) (2023-09-13T11:18:15Z) - Defect Classification in Additive Manufacturing Using CNN-Based Vision
Processing [76.72662577101988]
本稿では、まず、畳み込みニューラルネットワーク(CNN)を用いて、画像データセットの欠陥をAMから第2に正確に分類し、発達した分類モデルにアクティブラーニング技術を適用する。
これにより、トレーニングデータやトレーニングデータの生成に必要なデータのサイズを削減できる、ヒューマン・イン・ザ・ループ機構の構築が可能になる。
論文 参考訳(メタデータ) (2023-07-14T14:36:58Z) - Synthetic Data Augmentation Using GAN For Improved Automated Visual
Inspection [0.440401067183266]
最先端の教師なし欠陥検出は教師付きモデルの性能と一致しない。
AUC ROCスコアが 0,9898 以上である GAN ベースのデータ生成を考慮し, 最高の分類性能が得られた。
論文 参考訳(メタデータ) (2022-12-19T09:31:15Z) - Recognition of Defective Mineral Wool Using Pruned ResNet Models [88.24021148516319]
我々はミネラルウールのための視覚品質管理システムを開発した。
ウール標本のX線画像が収集され、欠陥および非欠陥サンプルのトレーニングセットが作成された。
我々は98%以上の精度のモデルを得たが、同社の現在の手順と比較すると、20%以上の欠陥製品を認識することができる。
論文 参考訳(メタデータ) (2022-11-01T13:58:02Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
リソグラフィーモデリングは、チップ設計マスクが製造可能であることを保証するため、チップ設計において重要な問題である。
機械学習の最近の進歩は、時間を要するリソグラフィーシミュレーションをディープニューラルネットワークに置き換えるための代替ソリューションを提供している。
本稿では,限られたデータのジレンマを解消し,機械学習モデルの性能を向上させるために,データ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-27T20:53:39Z) - Generative Modeling Helps Weak Supervision (and Vice Versa) [87.62271390571837]
本稿では,弱い監督と生成的敵ネットワークを融合したモデルを提案する。
弱い監督によるラベル推定と並行して、データの離散変数をキャプチャする。
これは、弱い教師付き合成画像と擬似ラベルによるデータ拡張を可能にする最初のアプローチである。
論文 参考訳(メタデータ) (2022-03-22T20:24:21Z) - Improving robustness against common corruptions with frequency biased
models [112.65717928060195]
目に見えない画像の腐敗は 驚くほど大きなパフォーマンス低下を引き起こします
画像の破損タイプは周波数スペクトルで異なる特性を持ち、ターゲットタイプのデータ拡張の恩恵を受けます。
畳み込み特徴マップの総変動(TV)を最小限に抑え、高周波堅牢性を高める新しい正規化方式を提案する。
論文 参考訳(メタデータ) (2021-03-30T10:44:50Z) - Cognitive Visual Inspection Service for LCD Manufacturing Industry [80.63336968475889]
本論文では,現在FPD業界で主流となっている液晶ディスプレイ(LCD)の視覚検査システムについて述べる。
システムは、堅牢/高性能欠陥認識モデルと認知視覚検査サービスアーキテクチャの2つの基礎に基づいています。
論文 参考訳(メタデータ) (2021-01-11T08:14:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。