Motion-compensated cardiac MRI using low-rank diffeomorphic flow (DMoCo)
- URL: http://arxiv.org/abs/2505.03149v3
- Date: Mon, 02 Jun 2025 16:13:13 GMT
- Title: Motion-compensated cardiac MRI using low-rank diffeomorphic flow (DMoCo)
- Authors: Joseph Kettelkamp, Ludovica Romanin, Sarv Priya, Mathews Jacob,
- Abstract summary: unsupervised motion-compensated image reconstruction algorithm for free-breathing and ungated 3D cardiac magnetic resonance imaging (MRI)<n>We express the image volume corresponding to each specific motion phase as the deformation of a single static image template.<n>The more constrained motion model is observed to offer improved recovery compared to current motion-compensated algorithms for free-breathing 3D cine MRI.
- Score: 11.684567299252741
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce an unsupervised motion-compensated image reconstruction algorithm for free-breathing and ungated 3D cardiac magnetic resonance imaging (MRI). We express the image volume corresponding to each specific motion phase as the deformation of a single static image template. The main contribution of the work is the low-rank model for the compact joint representation of the family of diffeomorphisms, parameterized by the motion phases. The diffeomorphism at a specific motion phase is obtained by integrating a parametric velocity field along a path connecting the reference template phase to the motion phase. The velocity field at different phases is represented using a low-rank model. The static template and the low-rank motion model parameters are learned directly from the k-space data in an unsupervised fashion. The more constrained motion model is observed to offer improved recovery compared to current motion-resolved and motion-compensated algorithms for free-breathing 3D cine MRI.
Related papers
- Non-rigid Motion Correction for MRI Reconstruction via Coarse-To-Fine Diffusion Models [2.8189656701789816]
Motion artifacts can compromise diagnostic utility, particularly for dynamic imaging.<n>We propose a novel alternating minimization framework that leverages a bespoke diffusion model to jointly reconstruct and correct motion-corrupted k-space data.<n>We demonstrate the performance of our approach on both real-world cine cardiac MRI datasets and complex simulated rigid and non-rigid deformations.
arXiv Detail & Related papers (2025-05-21T03:27:21Z) - EMoTive: Event-guided Trajectory Modeling for 3D Motion Estimation [59.33052312107478]
Event cameras offer possibilities for 3D motion estimation through continuous adaptive pixel-level responses to scene changes.<n>This paper presents EMove, a novel event-based framework that models-uniform trajectories via event-guided parametric curves.<n>For motion representation, we introduce a density-aware adaptation mechanism to fuse spatial and temporal features under event guidance.<n>The final 3D motion estimation is achieved through multi-temporal sampling of parametric trajectories, flows and depth motion fields.
arXiv Detail & Related papers (2025-03-14T13:15:54Z) - Highly efficient non-rigid registration in k-space with application to cardiac Magnetic Resonance Imaging [10.618048010632728]
We propose a novel self-supervised deep learning-based framework, dubbed the Local-All Pass Attention Network (LAPANet) for non-rigid motion estimation.
LAPANet was evaluated on cardiac motion estimation across various sampling trajectories and acceleration rates.
The achieved high temporal resolution (less than 5 ms) for non-rigid motion opens new avenues for motion detection, tracking and correction in dynamic and real-time MRI applications.
arXiv Detail & Related papers (2024-10-24T15:19:59Z) - Motion-aware 3D Gaussian Splatting for Efficient Dynamic Scene Reconstruction [89.53963284958037]
We propose a novel motion-aware enhancement framework for dynamic scene reconstruction.
Specifically, we first establish a correspondence between 3D Gaussian movements and pixel-level flow.
For the prevalent deformation-based paradigm that presents a harder optimization problem, a transient-aware deformation auxiliary module is proposed.
arXiv Detail & Related papers (2024-03-18T03:46:26Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
We propose Equivariant Graph Neural Operator (EGNO) to directly models dynamics as trajectories instead of just next-step prediction.
EGNO explicitly learns the temporal evolution of 3D dynamics where we formulate the dynamics as a function over time and learn neural operators to approximate it.
Comprehensive experiments in multiple domains, including particle simulations, human motion capture, and molecular dynamics, demonstrate the significantly superior performance of EGNO against existing methods.
arXiv Detail & Related papers (2024-01-19T21:50:32Z) - RoHM: Robust Human Motion Reconstruction via Diffusion [58.63706638272891]
RoHM is an approach for robust 3D human motion reconstruction from monocular RGB(-D) videos.
It conditioned on noisy and occluded input data, reconstructs complete, plausible motions in consistent global coordinates.
Our method outperforms state-of-the-art approaches qualitatively and quantitatively, while being faster at test time.
arXiv Detail & Related papers (2024-01-16T18:57:50Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - MomentaMorph: Unsupervised Spatial-Temporal Registration with Momenta,
Shooting, and Correction [12.281250177881445]
We introduce a novel framework for Lagrangian motion estimation in the presence of repetitive patterns and large motion.
The results on a 2D synthetic dataset and a real 3D tMRI dataset demonstrate our method's efficiency.
arXiv Detail & Related papers (2023-08-05T20:32:30Z) - JNMR: Joint Non-linear Motion Regression for Video Frame Interpolation [47.123769305867775]
Video frame (VFI) aims to generate frames by warping learnable motions from the bidirectional historical references.
We reformulate VFI as a Joint Non-linear Motion Regression (JNMR) strategy to model the complicated motions of inter-frame.
We show that the effectiveness and significant improvement of joint motion regression compared with state-of-the-art methods.
arXiv Detail & Related papers (2022-06-09T02:47:29Z) - Dynamic imaging using Motion-Compensated SmooThness Regularization on
Manifolds (MoCo-SToRM) [19.70386996879205]
We introduce an unsupervised motion-compensated reconstruction scheme for high-resolution free-breathing pulmonary MRI.
We model the image frames in the time series as the deformed version of the 3D template image volume.
We assume the deformation maps to be points on a smooth manifold in high-dimensional space.
arXiv Detail & Related papers (2021-12-06T22:04:57Z) - Dynamic imaging using motion-compensated smoothness regularization on
manifolds (MoCo-SToRM) [23.093076134206513]
We introduce an unsupervised deep manifold learning algorithm for motion-compensated dynamic MRI.
The utility of the algorithm is demonstrated in the context of motion-compensated high-resolution lung MRI.
arXiv Detail & Related papers (2021-11-21T19:52:01Z) - Learning a Generative Motion Model from Image Sequences based on a
Latent Motion Matrix [8.774604259603302]
We learn a probabilistic motion model from simulating temporal-temporal registration in a sequence of images.
We show improved registration accuracy-temporally smoother consistencys compared to three state-of-the-art registration algorithms.
We also demonstrate the model's applicability for motion analysis, simulation and super-resolution by an improved motion reconstruction from sequences with missing frames.
arXiv Detail & Related papers (2020-11-03T14:44:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.