論文の概要: An LLM-based Self-Evolving Security Framework for 6G Space-Air-Ground Integrated Networks
- arxiv url: http://arxiv.org/abs/2505.03161v2
- Date: Wed, 07 May 2025 16:04:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-08 12:54:13.647558
- Title: An LLM-based Self-Evolving Security Framework for 6G Space-Air-Ground Integrated Networks
- Title(参考訳): LLMによる6G空間空域統合ネットワークのための自己進化型セキュリティフレームワーク
- Authors: Qi Qin, Xinye Cao, Guoshun Nan, Sihan Chen, Rushan Li, Li Su, Haitao Du, Qimei Cui, Pengxuan Mao, Xiaofeng Tao, Tony Q. S. Quek,
- Abstract要約: 6Gスペースエアグラウンド統合ネットワーク(SAGIN)は、様々なモバイルアプリケーションに対してユビキタスなカバレッジを提供する。
大規模言語モデル(LLM)に基づくSAGINの新しいセキュリティフレームワークを提案する。
当社のフレームワークは,さまざまな未知の攻撃に対して堅牢な,高精度なセキュリティ戦略を実現しています。
- 参考スコア(独自算出の注目度): 49.605335601285496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently emerged 6G space-air-ground integrated networks (SAGINs), which integrate satellites, aerial networks, and terrestrial communications, offer ubiquitous coverage for various mobile applications. However, the highly dynamic, open, and heterogeneous nature of SAGINs poses severe security issues. Forming a defense line of SAGINs suffers from two preliminary challenges: 1) accurately understanding massive unstructured multi-dimensional threat information to generate defense strategies against various malicious attacks, 2) rapidly adapting to potential unknown threats to yield more effective security strategies. To tackle the above two challenges, we propose a novel security framework for SAGINs based on Large Language Models (LLMs), which consists of two key ingredients LLM-6GNG and 6G-INST. Our proposed LLM-6GNG leverages refined chain-of-thought (CoT) reasoning and dynamic multi-agent mechanisms to analyze massive unstructured multi-dimensional threat data and generate comprehensive security strategies, thus addressing the first challenge. Our proposed 6G-INST relies on a novel self-evolving method to automatically update LLM-6GNG, enabling it to accommodate unknown threats under dynamic communication environments, thereby addressing the second challenge. Additionally, we prototype the proposed framework with ns-3, OpenAirInterface (OAI), and software-defined radio (SDR). Experiments on three benchmarks demonstrate the effectiveness of our framework. The results show that our framework produces highly accurate security strategies that remain robust against a variety of unknown attacks. We will release our code to contribute to the community.
- Abstract(参考訳): 最近出現した6G宇宙空間統合ネットワーク(SAGIN)は、衛星、航空ネットワーク、地上通信を統合し、様々なモバイルアプリケーションに対してユビキタスなカバレッジを提供する。
しかし、SAGINの非常にダイナミックでオープンで異質な性質は深刻なセキュリティ問題を引き起こす。
SAGINの防衛線の形成には2つの予備的課題がある。
1)大規模無秩序な多次元脅威情報を正確に理解し、様々な悪意ある攻撃に対する防衛戦略を生成する。
2) 潜在的に未知の脅威に迅速に適応し、より効果的なセキュリティ戦略を得る。
以上の2つの課題に対処するために,Large Language Models (LLMs) に基づくSAGINsの新しいセキュリティフレームワークを提案する。
提案するLSM-6GNGは,CoT推論と動的マルチエージェント機構を利用して,大規模非構造化多次元脅威データを解析し,総合的なセキュリティ戦略を生成する。
提案する6G-INSTは, LLM-6GNGを自動更新し, 動的通信環境下で未知の脅威に対処し, 第2の課題に対処する。
さらに,提案するフレームワークを,ns-3,OpenAirInterface(OAI),Software-Defined Radio(SDR)で試作した。
3つのベンチマークの実験は、我々のフレームワークの有効性を実証している。
その結果、我々のフレームワークは、様々な未知の攻撃に対して堅牢な高度に正確なセキュリティ戦略を生み出すことがわかった。
私たちはコミュニティに貢献するためにコードを公開します。
関連論文リスト
- Tit-for-Tat: Safeguarding Large Vision-Language Models Against Jailbreak Attacks via Adversarial Defense [90.71884758066042]
大きな視覚言語モデル(LVLM)は、視覚入力による悪意のある攻撃に対する感受性という、ユニークな脆弱性を導入している。
本稿では,脆弱性発生源からアクティブ防衛機構へ視覚空間を変換するための新しい手法であるESIIIを提案する。
論文 参考訳(メタデータ) (2025-03-14T17:39:45Z) - Reasoning-Augmented Conversation for Multi-Turn Jailbreak Attacks on Large Language Models [53.580928907886324]
Reasoning-Augmented Conversationは、新しいマルチターンジェイルブレイクフレームワークである。
有害なクエリを良心的な推論タスクに再構成する。
RACEは,複雑な会話シナリオにおいて,最先端攻撃の有効性を実現する。
論文 参考訳(メタデータ) (2025-02-16T09:27:44Z) - Adversarial Robustness in Two-Stage Learning-to-Defer: Algorithms and Guarantees [3.6787328174619254]
Learning-to-Defer(L2D)は、AIシステムと意思決定者間の最適なタスク割り当てを容易にする。
本稿では, 2段階のL2Dフレームワークにおいて, 対向ロバスト性の最初の包括的解析を行う。
我々はベイズと$(mathcalR,mathcalG)$-consistencyをルーツとする頑健で凸なdeferralアルゴリズムであるSARDを提案する。
論文 参考訳(メタデータ) (2025-02-03T03:44:35Z) - An Approach To Enhance IoT Security In 6G Networks Through Explainable AI [1.9950682531209158]
6G通信は、特にIoTにおいて、画期的な機能を提供する6Gによって大きく進化した。
IoTを6Gに統合することで、高度なテクノロジによって導入された脆弱性による攻撃面の拡大という、新たなセキュリティ上の課題が提示される。
本研究は、木に基づく機械学習アルゴリズムを用いて複雑なデータセットを管理し、機能の重要性を評価することで、これらの課題に対処する。
論文 参考訳(メタデータ) (2024-10-04T20:14:25Z) - Toward Mixture-of-Experts Enabled Trustworthy Semantic Communication for 6G Networks [82.3753728955968]
本稿では,新しいMixture-of-Experts(MoE)ベースのSemComシステムを提案する。
このシステムはゲーティングネットワークと複数の専門家で構成され、それぞれ異なるセキュリティ課題に特化している。
ゲーティングネットワークは、ユーザ定義のセキュリティ要件に基づいて、異種攻撃に対抗するための適切な専門家を適応的に選択する。
車両ネットワークにおけるケーススタディは、MoEベースのSemComシステムの有効性を示す。
論文 参考訳(メタデータ) (2024-09-24T03:17:51Z) - The MESA Security Model 2.0: A Dynamic Framework for Mitigating Stealth Data Exfiltration [0.0]
ステルスデータ流出は、隠蔽侵入、拡張された検出不能、機密データの不正な拡散を特徴とする重要なサイバー脅威である。
以上の結果から,従来の防衛戦略はこれらの高度な脅威に対処するには不十分であることが判明した。
この複雑な風景をナビゲートする上で、潜在的な脅威を予測し、防衛を継続的に更新することが重要です。
論文 参考訳(メタデータ) (2024-05-17T16:14:45Z) - Large language models in 6G security: challenges and opportunities [5.073128025996496]
我々は,潜在的敵の立場から,Large Language Models(LLMs)のセキュリティ面に注目した。
これには包括的脅威分類の開発が含まれ、様々な敵の行動を分類する。
また、我々の研究は、防衛チーム(ブルーチームとしても知られる)によるサイバーセキュリティ活動にLLMがどのように統合されるかに焦点を当てます。
論文 参考訳(メタデータ) (2024-03-18T20:39:34Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。