論文の概要: Hybrid LLM-Enhanced Intrusion Detection for Zero-Day Threats in IoT Networks
- arxiv url: http://arxiv.org/abs/2507.07413v1
- Date: Thu, 10 Jul 2025 04:10:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-11 16:40:15.268006
- Title: Hybrid LLM-Enhanced Intrusion Detection for Zero-Day Threats in IoT Networks
- Title(参考訳): IoTネットワークにおけるゼロデイ脅威に対するLLMによるハイブリッド侵入検出
- Authors: Mohammad F. Al-Hammouri, Yazan Otoum, Rasha Atwa, Amiya Nayak,
- Abstract要約: 本稿では,GPT-2大言語モデル(LLM)の文脈理解機能と従来のシグネチャベース手法を統合した侵入検出手法を提案する。
本稿では,GPT-2による意味解析の適応性とシグネチャベースの手法の堅牢性を融合したハイブリッドIDSフレームワークを提案する。
代表的な侵入データセットを用いた実験により, 検出精度を6.3%向上し, 偽陽性率を9.0%低減し, ほぼリアルタイム応答性を維持した。
- 参考スコア(独自算出の注目度): 6.087274577167399
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel approach to intrusion detection by integrating traditional signature-based methods with the contextual understanding capabilities of the GPT-2 Large Language Model (LLM). As cyber threats become increasingly sophisticated, particularly in distributed, heterogeneous, and resource-constrained environments such as those enabled by the Internet of Things (IoT), the need for dynamic and adaptive Intrusion Detection Systems (IDSs) becomes increasingly urgent. While traditional methods remain effective for detecting known threats, they often fail to recognize new and evolving attack patterns. In contrast, GPT-2 excels at processing unstructured data and identifying complex semantic relationships, making it well-suited to uncovering subtle, zero-day attack vectors. We propose a hybrid IDS framework that merges the robustness of signature-based techniques with the adaptability of GPT-2-driven semantic analysis. Experimental evaluations on a representative intrusion dataset demonstrate that our model enhances detection accuracy by 6.3%, reduces false positives by 9.0%, and maintains near real-time responsiveness. These results affirm the potential of language model integration to build intelligent, scalable, and resilient cybersecurity defences suited for modern connected environments.
- Abstract(参考訳): 本稿では,GPT-2大言語モデル(LLM)の文脈理解機能と従来のシグネチャベースの手法を統合することで,侵入検出の新しいアプローチを提案する。
サイバー脅威が、特にIoT(Internet of Things)など、分散、異質、リソース制約のある環境において、ますます高度化するにつれ、動的かつ適応的な侵入検知システム(IDS)の必要性がますます高まっている。
従来の手法は既知の脅威を検出するのに有効であるが、新しく進化する攻撃パターンを認識するのに失敗することが多い。
対照的に、GPT-2は構造化されていないデータを処理し、複雑な意味関係を識別し、微妙なゼロデイ攻撃ベクトルを明らかにするのに適している。
本稿では,GPT-2による意味解析の適応性とシグネチャベースの手法の堅牢性を融合したハイブリッドIDSフレームワークを提案する。
代表的な侵入データセットを用いた実験により, 検出精度を6.3%向上し, 偽陽性率を9.0%低減し, ほぼリアルタイム応答性を維持した。
これらの結果は、現代の接続環境に適したインテリジェントでスケーラブルでレジリエントなサイバーセキュリティ防衛を構築するための言語モデル統合の可能性を確認します。
関連論文リスト
- Hybrid Machine Learning Models for Intrusion Detection in IoT: Leveraging a Real-World IoT Dataset [0.0]
これらの脅威を緩和するためには、侵入検知システム(IDS)が不可欠である。
機械学習(ML)の最近の進歩は、改善のための有望な道を提供する。
本研究は、いくつかのスタンドアロンMLモデルを組み合わせたハイブリッドアプローチを探求する。
論文 参考訳(メタデータ) (2025-02-17T23:41:10Z) - CONTINUUM: Detecting APT Attacks through Spatial-Temporal Graph Neural Networks [0.9553673944187253]
Advanced Persistent Threats (APT) はサイバーセキュリティにおいて重要な課題である。
従来の侵入検知システム(IDS)は、これらの多段階攻撃を検出するのに不足することが多い。
論文 参考訳(メタデータ) (2025-01-06T12:43:59Z) - CTINexus: Automatic Cyber Threat Intelligence Knowledge Graph Construction Using Large Language Models [49.657358248788945]
サイバー脅威インテリジェンス(CTI)レポートのテキスト記述は、サイバー脅威に関する豊富な知識源である。
現在のCTI知識抽出法は柔軟性と一般化性に欠ける。
我々は,データ効率の高いCTI知識抽出と高品質サイバーセキュリティ知識グラフ(CSKG)構築のための新しいフレームワークであるCTINexusを提案する。
論文 参考訳(メタデータ) (2024-10-28T14:18:32Z) - Enhancing Intrusion Detection in IoT Environments: An Advanced Ensemble Approach Using Kolmogorov-Arnold Networks [3.1309870454820277]
本稿では,KAN(Kolmogorov-Arnold Networks)とXGBoostアルゴリズムを組み合わせたハイブリッド侵入検知システムを提案する。
提案したIDSは,学習可能なアクティベーション関数を用いてデータ内の複雑な関係をモデル化し,XGBoostの強力なアンサンブル学習手法と併用する。
実験により,我々のハイブリッドIDSは,良性行動と悪意行動の区別において,99%以上の精度で検出できることがわかった。
論文 参考訳(メタデータ) (2024-08-28T15:58:49Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Adaptive Attack Detection in Text Classification: Leveraging Space Exploration Features for Text Sentiment Classification [44.99833362998488]
敵のサンプル検出は、特に急速に進化する攻撃に直面して、適応的なサイバー防御において重要な役割を果たす。
本稿では,BERT(Bidirectional Representations from Transformers)のパワーを活用し,空間探索機能(Space Exploration Features)の概念を提案する。
論文 参考訳(メタデータ) (2023-08-29T23:02:26Z) - Interpolated Joint Space Adversarial Training for Robust and
Generalizable Defenses [82.3052187788609]
敵の訓練(AT)は、敵の攻撃に対する最も信頼できる防御の1つと考えられている。
近年の研究では、新たな脅威モデルの下での対向サンプルによる一般化の改善が示されている。
我々は、JSTM(Joint Space Threat Model)と呼ばれる新しい脅威モデルを提案する。
JSTMでは,新たな敵攻撃・防衛手法が開発されている。
論文 参考訳(メタデータ) (2021-12-12T21:08:14Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
既存のディープニューラルネットワークに基づくサルエントオブジェクト検出(SOD)手法は主に高いネットワーク精度の追求に重点を置いている。
これらの手法は、信頼不均衡問題として知られるネットワーク精度と予測信頼の間のギャップを見落としている。
我々は,不確実性を考慮した深部SODネットワークを導入し,深部SODネットワークの過信を防止するための2つの戦略を提案する。
論文 参考訳(メタデータ) (2020-12-10T23:28:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。