Generative AI for Vulnerability Detection in 6G Wireless Networks: Advances, Case Study, and Future Directions
- URL: http://arxiv.org/abs/2506.20488v1
- Date: Wed, 25 Jun 2025 14:36:31 GMT
- Title: Generative AI for Vulnerability Detection in 6G Wireless Networks: Advances, Case Study, and Future Directions
- Authors: Shuo Yang, Xinran Zheng, Jinfeng Xu, Jinze Li, Danyang Song, Zheyu Chen, Edith C. H. Ngai,
- Abstract summary: Generative AI (GAI) emerges as a transformative solution, leveraging synthetic data generation, multimodal reasoning, and adaptive learning to enhance security frameworks.<n>This paper explores the integration of GAI-powered vulnerability detection in 6G wireless networks, focusing on code auditing, protocol security, cloud-edge defenses, and hardware protection.
- Score: 7.991374874432769
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of 6G wireless networks, IoT, and edge computing has significantly expanded the cyberattack surface, necessitating more intelligent and adaptive vulnerability detection mechanisms. Traditional security methods, while foundational, struggle with zero-day exploits, adversarial threats, and context-dependent vulnerabilities in highly dynamic network environments. Generative AI (GAI) emerges as a transformative solution, leveraging synthetic data generation, multimodal reasoning, and adaptive learning to enhance security frameworks. This paper explores the integration of GAI-powered vulnerability detection in 6G wireless networks, focusing on code auditing, protocol security, cloud-edge defenses, and hardware protection. We introduce a three-layer framework comprising the Technology Layer, Capability Layer, and Application Layer to systematically analyze the role of VAEs, GANs, LLMs, and GDMs in securing next-generation wireless ecosystems. To demonstrate practical implementation, we present a case study on LLM-driven code vulnerability detection, highlighting its effectiveness, performance, and challenges. Finally, we outline future research directions, including lightweight models, high-authenticity data generation, external knowledge integration, and privacy-preserving technologies. By synthesizing current advancements and open challenges, this work provides a roadmap for researchers and practitioners to harness GAI for building resilient and adaptive security solutions in 6G networks.
Related papers
- Generative AI-Empowered Secure Communications in Space-Air-Ground Integrated Networks: A Survey and Tutorial [107.26005706569498]
Space-air-ground integrated networks (SAGINs) face unprecedented security challenges due to their inherent characteristics.<n>Generative AI (GAI) is a transformative approach that can safeguard SAGIN security by synthesizing data, understanding semantics, and making autonomous decisions.
arXiv Detail & Related papers (2025-08-04T01:42:57Z) - Agentic Satellite-Augmented Low-Altitude Economy and Terrestrial Networks: A Survey on Generative Approaches [76.12691010182802]
This survey focuses on enabling agentic artificial intelligence (AI) in satellite-augmented low-altitude economy and terrestrial networks (SLAETNs)<n>We introduce the architecture and characteristics of SLAETNs, and analyze the challenges that arise in integrating satellite, aerial, and terrestrial components.<n>We examine how these models empower agentic functions across three domains: communication enhancement, security and privacy protection, and intelligent satellite tasks.
arXiv Detail & Related papers (2025-07-19T14:07:05Z) - An LLM-based Self-Evolving Security Framework for 6G Space-Air-Ground Integrated Networks [49.605335601285496]
6G space-air-ground integrated networks (SAGINs) offer ubiquitous coverage for various mobile applications.<n>We propose a novel security framework for SAGINs based on Large Language Models (LLMs)<n>Our framework produces highly accurate security strategies that remain robust against a variety of unknown attacks.
arXiv Detail & Related papers (2025-05-06T04:14:13Z) - Towards Zero Touch Networks: Cross-Layer Automated Security Solutions for 6G Wireless Networks [39.08784216413478]
This paper proposes an automated security framework targeting Physical Layer Authentication and Cross-Layer Intrusion Detection Systems.<n>The proposed framework employs drift-adaptive online learning techniques and a novel enhanced Successive Halving (SH)-based Automated ML (AutoML) method to automatically generate optimized ML models for dynamic networking environments.
arXiv Detail & Related papers (2025-02-28T01:16:11Z) - Towards Robust Stability Prediction in Smart Grids: GAN-based Approach under Data Constraints and Adversarial Challenges [53.2306792009435]
This paper introduces a novel framework for detecting instability in smart grids using only stable data.<n>It achieves up to 98.1% accuracy in predicting grid stability and 98.9% in detecting adversarial attacks.<n>Implemented on a single-board computer, it enables real-time decision-making with an average response time of under 7ms.
arXiv Detail & Related papers (2025-01-27T20:48:25Z) - An Approach To Enhance IoT Security In 6G Networks Through Explainable AI [1.9950682531209158]
6G communication has evolved significantly, with 6G offering groundbreaking capabilities, particularly for IoT.<n>The integration of IoT into 6G presents new security challenges, expanding the attack surface due to vulnerabilities introduced by advanced technologies.<n>Our research addresses these challenges by utilizing tree-based machine learning algorithms to manage complex datasets and evaluate feature importance.
arXiv Detail & Related papers (2024-10-04T20:14:25Z) - From 5G to 6G: A Survey on Security, Privacy, and Standardization Pathways [21.263571241047178]
The vision for 6G aims to enhance network capabilities with faster data rates, near-zero latency, and higher capacity.
This advancement seeks to enable immersive mixed-reality experiences, holographic communications, and smart city infrastructures.
The expansion of 6G raises critical security and privacy concerns, such as unauthorized access and data breaches.
arXiv Detail & Related papers (2024-10-04T03:03:44Z) - Security, Trust and Privacy challenges in AI-driven 6G Networks [2.362412515574206]
This article explores the evolving infrastructure of 6G networks, emphasizing the transition towards a more disaggregated structure.
It presents a classification of network attacks stemming from its AI-centric architecture and explores technologies designed to detect or mitigate these emerging threats.
The paper concludes by examining the implications and risks linked to the utilization of AI in ensuring a robust network.
arXiv Detail & Related papers (2024-09-16T14:48:20Z) - A Life-long Learning Intrusion Detection System for 6G-Enabled IoV [3.2284427438223013]
6G technology will revolutionize the Internet of Vehicles (IoV) with ultra-high data rates and seamless network coverage.
6G will likely increase the IoV's susceptibility to a spectrum of emerging cyber threats.
This paper presents a novel intrusion detection system leveraging the paradigm of life-long (or continual) learning.
arXiv Detail & Related papers (2024-07-22T15:07:27Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - Causal Reasoning: Charting a Revolutionary Course for Next-Generation
AI-Native Wireless Networks [63.246437631458356]
Next-generation wireless networks (e.g., 6G) will be artificial intelligence (AI)-native.
This article introduces a novel framework for building AI-native wireless networks; grounded in the emerging field of causal reasoning.
We highlight several wireless networking challenges that can be addressed by causal discovery and representation.
arXiv Detail & Related papers (2023-09-23T00:05:39Z) - Task-Oriented Integrated Sensing, Computation and Communication for
Wireless Edge AI [46.61358701676358]
Edge artificial intelligence (AI) has been proposed to provide high-performance computation of a conventional cloud down to the network edge.
Recently, convergence of wireless sensing, computation and communication (SC$2$) for specific edge AI tasks, has aroused paradigm shift.
It is paramount importance to advance fully integrated sensing, computation and communication (I SCC) to achieve ultra-reliable and low-latency edge intelligence acquisition.
arXiv Detail & Related papers (2023-06-11T06:40:51Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
Terahertz (THz) wireless networks are expected to catalyze the beyond fifth generation (B5G) era.
To satisfy the ultra-reliability and low-latency demands of several B5G applications, novel mobility management approaches are required.
This article presents a holistic MAC layer approach that enables intelligent user association and resource allocation, as well as flexible and adaptive mobility management.
arXiv Detail & Related papers (2022-08-17T03:00:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.