Elevating Semantic Exploration: A Novel Approach Utilizing Distributed Repositories
- URL: http://arxiv.org/abs/2505.03443v1
- Date: Tue, 06 May 2025 11:30:16 GMT
- Title: Elevating Semantic Exploration: A Novel Approach Utilizing Distributed Repositories
- Authors: Valerio Bellandi,
- Abstract summary: This paper explores a distributed document repository system developed for the Italian Ministry of Justice.<n>It uses edge repositories to analyze data and metadata, enhancing semantic exploration capabilities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Centralized and distributed systems are two main approaches to organizing ICT infrastructure, each with its pros and cons. Centralized systems concentrate resources in one location, making management easier but creating single points of failure. Distributed systems, on the other hand, spread resources across multiple nodes, offering better scalability and fault tolerance, but requiring more complex management. The choice between them depends on factors like application needs, scalability, and data sensitivity. Centralized systems suit applications with limited scalability and centralized control, while distributed systems excel in large-scale environments requiring high availability and performance. This paper explores a distributed document repository system developed for the Italian Ministry of Justice, using edge repositories to analyze textual data and metadata, enhancing semantic exploration capabilities.
Related papers
- Decentralizing AI Memory: SHIMI, a Semantic Hierarchical Memory Index for Scalable Agent Reasoning [0.0]
We present SHIMI (Semantic Hierarchical Memory Index), a unified architecture that models knowledge as a dynamically structured hierarchy of concepts.<n>SHIMI is designed for decentralized ecosystems, where agents maintain local memory trees and synchronize them asynchronously across networks.
arXiv Detail & Related papers (2025-04-08T15:31:00Z) - Boost, Disentangle, and Customize: A Robust System2-to-System1 Pipeline for Code Generation [58.799397354312596]
Large language models (LLMs) have demonstrated remarkable capabilities in various domains, particularly in system 1 tasks.<n>Recent research on System2-to-System1 methods surge, exploring the System 2 reasoning knowledge via inference-time computation.<n>In this paper, we focus on code generation, which is a representative System 2 task, and identify two primary challenges.
arXiv Detail & Related papers (2025-02-18T03:20:50Z) - Distributed Learning and Inference Systems: A Networking Perspective [0.0]
This work proposes a novel framework, Data and Dynamics-Aware Inference and Training Networks (DA-ITN)<n>The different components of DA-ITN and their functions are explored, and the associated challenges and research areas are highlighted.
arXiv Detail & Related papers (2025-01-09T15:48:29Z) - Cluster-Based Multi-Agent Task Scheduling for Space-Air-Ground Integrated Networks [60.085771314013044]
Low-altitude economy holds significant potential for development in areas such as communication and sensing.<n>We propose a Clustering-based Multi-agent Deep Deterministic Policy Gradient (CMADDPG) algorithm to address the multi-UAV cooperative task scheduling challenges in SAGIN.
arXiv Detail & Related papers (2024-12-14T06:17:33Z) - A Comprehensive Survey on Joint Resource Allocation Strategies in Federated Edge Learning [9.806901443019008]
Federated Edge Learning (FEL) enables model training in a distributed environment while ensuring user privacy by using physical separation for each user data.
With the development of complex application scenarios such as the Internet of Things (IoT) and Smart Earth, the conventional resource allocation schemes can no longer effectively support these growing computational and communication demands.
This paper systematically addresses the multifaceted challenges of computation and communication, with the growing multiple resource demands.
arXiv Detail & Related papers (2024-10-10T13:02:00Z) - Hypergame Theory for Decentralized Resource Allocation in Multi-user Semantic Communications [60.63472821600567]
A novel framework for decentralized computing and communication resource allocation in multiuser SC systems is proposed.
The challenge of efficiently allocating communication and computing resources is addressed through the application of Stackelberg hyper game theory.
Simulation results show that the proposed Stackelberg hyper game results in efficient usage of communication and computing resources.
arXiv Detail & Related papers (2024-09-26T15:55:59Z) - De-DSI: Decentralised Differentiable Search Index [0.0]
De-DSI is a framework that fuses large language models with genuine decentralization for information retrieval.
It uses the differentiable search index (DSI) concept in a decentralized setting to efficiently connect novel user queries with document identifiers.
arXiv Detail & Related papers (2024-04-18T14:51:55Z) - Distribution-Free Fair Federated Learning with Small Samples [54.63321245634712]
FedFaiREE is a post-processing algorithm developed specifically for distribution-free fair learning in decentralized settings with small samples.
We provide rigorous theoretical guarantees for both fairness and accuracy, and our experimental results further provide robust empirical validation for our proposed method.
arXiv Detail & Related papers (2024-02-25T17:37:53Z) - An Analysis of Multi-Agent Reinforcement Learning for Decentralized
Inventory Control Systems [0.0]
Most solutions to the inventory management problem assume a centralization of information incompatible with organisational constraints in real supply chain networks.
This paper proposes a decentralized data-driven solution to inventory management problems using multi-agent reinforcement learning.
Results show that using multi-agent proximal policy optimization with a centralized critic leads to performance very close to that of a centralized data-driven solution.
arXiv Detail & Related papers (2023-07-21T08:52:08Z) - Networked Communication for Decentralised Agents in Mean-Field Games [59.01527054553122]
We introduce networked communication to the mean-field game framework.<n>We prove that our architecture has sample guarantees bounded between those of the centralised- and independent-learning cases.<n>We show that our networked approach has significant advantages over both alternatives in terms of robustness to update failures and to changes in population size.
arXiv Detail & Related papers (2023-06-05T10:45:39Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
This work poses a distributed multi-resource allocation scheme for minimizing the weighted sum of latency and energy consumption in the on-device distributed federated learning (FL) system.
Each mobile device in the system engages the model training process within the specified area and allocates its computation and communication resources for deriving and uploading parameters, respectively.
arXiv Detail & Related papers (2022-11-01T14:16:05Z) - Decentralized Control with Graph Neural Networks [147.84766857793247]
We propose a novel framework using graph neural networks (GNNs) to learn decentralized controllers.
GNNs are well-suited for the task since they are naturally distributed architectures and exhibit good scalability and transferability properties.
The problems of flocking and multi-agent path planning are explored to illustrate the potential of GNNs in learning decentralized controllers.
arXiv Detail & Related papers (2020-12-29T18:59:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.