Environmental Quantum States Trigger Emission in Nonlinear Photonics
- URL: http://arxiv.org/abs/2505.03640v1
- Date: Tue, 06 May 2025 15:40:58 GMT
- Title: Environmental Quantum States Trigger Emission in Nonlinear Photonics
- Authors: Jia-Qi Li, Xin Wang,
- Abstract summary: We report the discovery of a novel mechanism, termed triggered emission, in which an emitter, largely detuned from single-photon states, is triggered by the quantum state of the environment to emit a highly correlated photon pair, doublon.<n>Our findings deepen the understanding of nonlinear emitter dynamics and provide a versatile platform for quantum computing and quantum information processing.
- Score: 7.01253814693134
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Light-matter interactions are traditionally governed by two fundamental paradigms: spontaneous and stimulated radiation. However, in nonlinear multi-photon regimes, these classical mechanisms break down, revealing new possibilities for light emission. Here, we report the discovery of a novel mechanism, termed triggered emission, in which an emitter, largely detuned from single-photon states, is triggered by the quantum state of the environment to emit a highly correlated photon pair, doublon. By identifying two critical conditions, energy matching and wavefunction overlap, we demonstrate that the dynamics of the emitter are profoundly shaped by the environment's quantum state. Using this framework, we construct a novel superposition state comprising a localized single-photon state and a propagating, strongly correlated two-photon wavepacket. Furthermore, we realize the multi-photon unidirectional emission by modulating the emitter and the photon state. Our findings not only deepen the understanding of nonlinear emitter dynamics but also provide a versatile platform for quantum computing and quantum information processing.
Related papers
- Photon-mediated interactions and dynamics of coherently driven quantum emitters in complex photonic environments [41.94295877935867]
Born-Markov master equations have been extensively employed in the description of quantum optical phenomena.<n>We benchmark this modeling approach for the quantum dynamics of the emitter pair against exact calculations based on a macroscopic field quantization formalism.<n>Our analysis reveals four distinct regimes of laser driving and frequency splitting that lead to markedly different levels of accuracy in the effective model.
arXiv Detail & Related papers (2025-08-01T09:38:07Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Violation of Bell inequality by photon scattering on a two-level emitter [4.810881229568956]
Entanglement, the non-local correlations present in quantum systems, is a curious feature of quantum mechanics and the fuel of quantum technology.
We show how a single two-level emitter deterministically coupled to light in a nanophotonic waveguide is used to realize genuine photonic quantum entanglement for excitation at the single photon level.
arXiv Detail & Related papers (2023-06-22T11:01:24Z) - The quantum state of light in collective spontaneous emission [0.0]
Collective spontaneous emission occurs when multiple quantum emitters decay into common radiation modes.
We unveil under what conditions the quantum correlations are not lost during the emission but are instead transferred to the output light.
Our findings suggest new paths for creating and manipulating multi-photon quantum light for bosonic codes in continuous-variable-based quantum computation, communications, and sensing.
arXiv Detail & Related papers (2023-06-20T07:31:19Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Waveguide QED with Quadratic Light-Matter Interactions [0.0]
We show that a single quadratically-coupled emitter can implement a two-photon logic gate with unit fidelity.
This unlocks new opportunities in quantum information processing with propagating photons.
arXiv Detail & Related papers (2023-03-13T18:01:44Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Two-photon spontaneous emission in atomically thin plasmonic
nanostructures [0.0]
Two-photon states are key quantum assets, but achieving them in individual emitters is challenging.
We demonstrate that atomically thin plasmonic nanostructures can harness two-photon spontaneous emission.
This paves the way to an alternative efficient source of light-matter entanglement for on-chip quantum information processing and free-space quantum communications.
arXiv Detail & Related papers (2020-06-26T21:31:51Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.