AMO: Adaptive Motion Optimization for Hyper-Dexterous Humanoid Whole-Body Control
- URL: http://arxiv.org/abs/2505.03738v1
- Date: Tue, 06 May 2025 17:59:51 GMT
- Title: AMO: Adaptive Motion Optimization for Hyper-Dexterous Humanoid Whole-Body Control
- Authors: Jialong Li, Xuxin Cheng, Tianshu Huang, Shiqi Yang, Ri-Zhao Qiu, Xiaolong Wang,
- Abstract summary: We propose a framework that integrates sim-to-real reinforcement learning with trajectory optimization for real-time, adaptive whole-body control.<n>We show that AMO's consistent performance supports autonomous task execution via imitation learning.
- Score: 14.403489342466049
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Humanoid robots derive much of their dexterity from hyper-dexterous whole-body movements, enabling tasks that require a large operational workspace: such as picking objects off the ground. However, achieving these capabilities on real humanoids remains challenging due to their high degrees of freedom (DoF) and nonlinear dynamics. We propose Adaptive Motion Optimization (AMO), a framework that integrates sim-to-real reinforcement learning (RL) with trajectory optimization for real-time, adaptive whole-body control. To mitigate distribution bias in motion imitation RL, we construct a hybrid AMO dataset and train a network capable of robust, on-demand adaptation to potentially O.O.D. commands. We validate AMO in simulation and on a 29-DoF Unitree G1 humanoid robot, demonstrating superior stability and an expanded workspace compared to strong baselines. Finally, we show that AMO's consistent performance supports autonomous task execution via imitation learning, underscoring the system's versatility and robustness.
Related papers
- Pre-Trained Video Generative Models as World Simulators [59.546627730477454]
We propose Dynamic World Simulation (DWS) to transform pre-trained video generative models into controllable world simulators.<n>To achieve precise alignment between conditioned actions and generated visual changes, we introduce a lightweight, universal action-conditioned module.<n> Experiments demonstrate that DWS can be versatilely applied to both diffusion and autoregressive transformer models.
arXiv Detail & Related papers (2025-02-10T14:49:09Z) - ASAP: Aligning Simulation and Real-World Physics for Learning Agile Humanoid Whole-Body Skills [46.16771391136412]
ASAP is a two-stage framework designed to tackle the dynamics mismatch and enable agile humanoid whole-body skills.<n>In the first stage, we pre-train motion tracking policies in simulation using retargeted human motion data.<n>In the second stage, we deploy the policies in the real world and collect real-world data to train a delta (residual) action model.
arXiv Detail & Related papers (2025-02-03T08:22:46Z) - Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics [50.191655141020505]
This work advances model-based reinforcement learning by addressing the challenges of long-horizon prediction, error accumulation, and sim-to-real transfer.<n>By providing a scalable and robust framework, the introduced methods pave the way for adaptive and efficient robotic systems in real-world applications.
arXiv Detail & Related papers (2025-01-17T10:39:09Z) - RobotDiffuse: Motion Planning for Redundant Manipulator based on Diffusion Model [13.110235244912474]
Redundant manipulators offer enhanced kinematic performance and versatility.<n>Motion planning for these manipulators is challenging due to increased DOFs and complex, dynamic environments.<n>This paper introduces RobotDiffuse, a diffusion model-based approach for motion planning in redundant manipulators.
arXiv Detail & Related papers (2024-12-27T07:34:54Z) - DrEureka: Language Model Guided Sim-To-Real Transfer [64.14314476811806]
Transferring policies learned in simulation to the real world is a promising strategy for acquiring robot skills at scale.
In this paper, we investigate using Large Language Models (LLMs) to automate and accelerate sim-to-real design.
Our approach is capable of solving novel robot tasks, such as quadruped balancing and walking atop a yoga ball.
arXiv Detail & Related papers (2024-06-04T04:53:05Z) - Task and Domain Adaptive Reinforcement Learning for Robot Control [0.34137115855910755]
We present a novel adaptive agent to dynamically adapt policy in response to different tasks and environmental conditions.
The agent is trained using a custom, highly parallelized simulator built on IsaacGym.
We perform zero-shot transfer to fly the blimp in the real world to solve various tasks.
arXiv Detail & Related papers (2024-04-29T14:02:02Z) - Combining model-predictive control and predictive reinforcement learning
for stable quadrupedal robot locomotion [0.0]
We study how this can be achieved by a combination of model-predictive and predictive reinforcement learning controllers.
In this work, we combine both control methods to address the quadrupedal robot stable gate generation problem.
arXiv Detail & Related papers (2023-07-15T09:22:37Z) - Residual Physics Learning and System Identification for Sim-to-real
Transfer of Policies on Buoyancy Assisted Legged Robots [14.760426243769308]
In this work, we demonstrate robust sim-to-real transfer of control policies on the BALLU robots via system identification.
Rather than relying on standard supervised learning formulations, we utilize deep reinforcement learning to train an external force policy.
We analyze the improved simulation fidelity by comparing the simulation trajectories against the real-world ones.
arXiv Detail & Related papers (2023-03-16T18:49:05Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
arXiv Detail & Related papers (2021-11-15T18:50:04Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
Operational Space Control (OSC) has been used as an effective task-space controller for manipulation.
We propose OSC for Adaptation and Robustness (OSCAR), a data-driven variant of OSC that compensates for modeling errors.
We evaluate our method on a variety of simulated manipulation problems, and find substantial improvements over an array of controller baselines.
arXiv Detail & Related papers (2021-10-02T01:21:38Z) - ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for
Mobile Manipulation [99.2543521972137]
ReLMoGen is a framework that combines a learned policy to predict subgoals and a motion generator to plan and execute the motion needed to reach these subgoals.
Our method is benchmarked on a diverse set of seven robotics tasks in photo-realistic simulation environments.
ReLMoGen shows outstanding transferability between different motion generators at test time, indicating a great potential to transfer to real robots.
arXiv Detail & Related papers (2020-08-18T08:05:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.