論文の概要: GPU Performance Portability needs Autotuning
- arxiv url: http://arxiv.org/abs/2505.03780v1
- Date: Wed, 30 Apr 2025 12:57:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-08 19:07:35.798235
- Title: GPU Performance Portability needs Autotuning
- Title(参考訳): GPUパフォーマンスのポータビリティには自動チューニングが必要だ
- Authors: Burkhard Ringlein, Thomas Parnell, Radu Stoica,
- Abstract要約: 我々は、Just-in-time(JIT)コンパイルとカーネルパラメータの自動チューニングを組み合わせることで、コード変更なしにポータブルで最先端のLCM実行を可能にする。
我々の結果は、GPUベンダー間のモデルポータビリティをアンロックするための有望なパスとして、オートチューニングを強調しています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As LLMs grow in complexity, achieving state-of-the-art performance requires tight co-design across algorithms, software, and hardware. Today's reliance on a single dominant platform limits portability, creates vendor lock-in, and raises barriers for new AI hardware. In this work, we make the case for combining just-in-time (JIT) compilation with kernel parameter autotuning to enable portable, state-of-the-art performance LLM execution without code changes. Focusing on flash attention -- a widespread performance-critical LLM kernel -- we demonstrate that this approach explores up to 15x more kernel parameter configurations, produces significantly more diverse code across multiple dimensions, and even outperforms vendor-optimized implementations by up to 230%, all while reducing kernel code size by 70x and eliminating manual code optimizations. Our results highlight autotuning as a promising path to unlocking model portability across GPU vendors.
- Abstract(参考訳): LLMの複雑さが増大するにつれて、最先端のパフォーマンスを達成するには、アルゴリズム、ソフトウェア、ハードウェア間の密な共同設計が必要である。
今日の支配的なプラットフォームへの依存は、ポータビリティを制限し、ベンダロックインを生成し、新たなAIハードウェアの障壁を提起する。
本研究では、Just-in-time(JIT)コンパイルとカーネルパラメータの自動チューニングを組み合わせることで、コード変更なしにポータブルで最先端のLCM実行を可能にする。
パフォーマンスクリティカルなLLMカーネルであるフラッシュアテンションに注目して、このアプローチが最大15倍のカーネルパラメータ設定を探索し、複数のディメンジョンにわたって大幅に多様なコードを生成し、さらにはベンダー最適化実装を最大230%上回るパフォーマンスを実現し、カーネルコードサイズを70倍に削減し、手作業によるコード最適化を排除していることを実証した。
我々の結果は、GPUベンダー間のモデルポータビリティをアンロックするための有望なパスとして、オートチューニングを強調しています。
関連論文リスト
- Liger Kernel: Efficient Triton Kernels for LLM Training [6.373771349397682]
大規模言語モデル(LLM)を大規模に効果的に訓練することは、ますます増大する計算要求によって引き起こされる、恐ろしい挑戦となる。
LLMトレーニング用に開発されたTritonカーネルのオープンソースセットであるLiger- Kernelを紹介する。
カーネル操作の融合や入力チャンキングといったカーネル最適化技術により、カーネルはトレーニングのスループットが平均20%向上し、GPUメモリ使用量が60%削減された。
論文 参考訳(メタデータ) (2024-10-14T18:17:01Z) - MARLIN: Mixed-Precision Auto-Regressive Parallel Inference on Large Language Models [58.3342517278868]
本稿では,Mixed-precision AutoRegressive LINearカーネルの設計について述べる。
バッチサイズは16-32までサポートでき、量子化のスピードアップが最大 (4times$) になる。
MarLINは非同期メモリアクセス、複雑なタスクスケジューリング、パイプライン化といったテクニックを組み合わせてこれを実現している。
論文 参考訳(メタデータ) (2024-08-21T16:10:41Z) - Hardware-Aware Parallel Prompt Decoding for Memory-Efficient Acceleration of LLM Inference [19.167604927651073]
LLM(Large Language Models)の自動回帰デコーディングは、ハードウェアの性能に大きなオーバーヘッドをもたらす。
トレーニング可能なパラメータを0.0002$%しか必要とせず,A100-40GBのGPUをたった16時間で効率的にトレーニングできる並列プロンプトデコーディングを提案する。
我々のアプローチでは、最大2.49$times$ スピードアップを示し、最小のメモリオーバーヘッドは0.0004$%である。
論文 参考訳(メタデータ) (2024-05-28T22:19:30Z) - Fast Chain-of-Thought: A Glance of Future from Parallel Decoding Leads to Answers Faster [61.83949316226113]
FastCoTは並列デコーディングに基づくモデルに依存しないフレームワークである。
我々は、FastCoTが通常のアプローチと比較して、無視できる性能低下だけで、推論時間を20%近く削減できることを示します。
論文 参考訳(メタデータ) (2023-11-14T15:56:18Z) - Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures [67.47328776279204]
この研究は、効率的でポータブルなDeep LearningとHigh Performance Computingカーネルを開発するためのフレームワークを導入している。
1)プロセッシングプリミティブ(TPP)を用いた計算コアの表現と,2)高レベルな宣言的手法でTPPのまわりの論理ループの表現の2つのステップでカーネルの開発を分解する。
我々は、スタンドアロンカーネルと、さまざまなCPUプラットフォームにおける最先端実装よりも優れたエンドツーエンドワークロードを使用して、このアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-25T05:04:44Z) - Adaptable Butterfly Accelerator for Attention-based NNs via Hardware and
Algorithm Co-design [66.39546326221176]
多くのAIタスクにおいて、注意に基づくニューラルネットワークが普及している。
注意機構とフィードフォワードネットワーク(FFN)の使用は、過剰な計算とメモリ資源を必要とする。
本稿では,注目機構とFFNの両方を近似するために,バタフライの分散パターンを統一したハードウェアフレンドリーな変種を提案する。
論文 参考訳(メタデータ) (2022-09-20T09:28:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。