論文の概要: ArrhythmiaVision: Resource-Conscious Deep Learning Models with Visual Explanations for ECG Arrhythmia Classification
- arxiv url: http://arxiv.org/abs/2505.03787v1
- Date: Wed, 30 Apr 2025 18:22:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-08 19:07:35.80591
- Title: ArrhythmiaVision: Resource-Conscious Deep Learning Models with Visual Explanations for ECG Arrhythmia Classification
- Title(参考訳): ArrhythmiaVision:ECG不整脈分類のためのビジュアル説明付き資源意識深層学習モデル
- Authors: Zuraiz Baig, Sidra Nasir, Rizwan Ahmed Khan, Muhammad Zeeshan Ul Haque,
- Abstract要約: 本稿では,エッジデバイス上での効率的なリアルタイム不整脈分類に最適化されたArrhythmiNet V1とV2を提案する。
MobileNetの深い分離可能な畳み込み設計にインスパイアされたこれらのモデルは、それぞれ302.18KBと157.76KBのメモリフットプリントを維持している。
本研究は, 実用, ウェアラブル, 組込みECGモニタリングシステムにおいて, 解釈可能性, 予測精度, 計算効率の両立の可能性を示すものである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cardiac arrhythmias are a leading cause of life-threatening cardiac events, highlighting the urgent need for accurate and timely detection. Electrocardiography (ECG) remains the clinical gold standard for arrhythmia diagnosis; however, manual interpretation is time-consuming, dependent on clinical expertise, and prone to human error. Although deep learning has advanced automated ECG analysis, many existing models abstract away the signal's intrinsic temporal and morphological features, lack interpretability, and are computationally intensive-hindering their deployment on resource-constrained platforms. In this work, we propose two novel lightweight 1D convolutional neural networks, ArrhythmiNet V1 and V2, optimized for efficient, real-time arrhythmia classification on edge devices. Inspired by MobileNet's depthwise separable convolutional design, these models maintain memory footprints of just 302.18 KB and 157.76 KB, respectively, while achieving classification accuracies of 0.99 (V1) and 0.98 (V2) on the MIT-BIH Arrhythmia Dataset across five classes: Normal Sinus Rhythm, Left Bundle Branch Block, Right Bundle Branch Block, Atrial Premature Contraction, and Premature Ventricular Contraction. In order to ensure clinical transparency and relevance, we integrate Shapley Additive Explanations and Gradient-weighted Class Activation Mapping, enabling both local and global interpretability. These techniques highlight physiologically meaningful patterns such as the QRS complex and T-wave that contribute to the model's predictions. We also discuss performance-efficiency trade-offs and address current limitations related to dataset diversity and generalizability. Overall, our findings demonstrate the feasibility of combining interpretability, predictive accuracy, and computational efficiency in practical, wearable, and embedded ECG monitoring systems.
- Abstract(参考訳): 心臓不整脈は、生命を脅かす心臓イベントの主要な原因であり、正確でタイムリーな検出の緊急の必要性を強調している。
心電図(ECG)は不整脈診断における臨床金の基準であり続けているが、手動による解釈は時間を要する。
ディープラーニングには高度な自動ECG分析があるが、多くの既存のモデルは、信号の固有の時間的特徴と形態的特徴を抽象化し、解釈性に欠け、リソース制約のあるプラットフォームへの展開を計算的に妨げている。
本研究では,エッジデバイス上での効率的なリアルタイム不整脈分類に最適化された2つの軽量1次元畳み込みニューラルネットワークであるArrhythmiNet V1とV2を提案する。
これらのモデルはそれぞれ302.18 KBと157.76 KBのメモリフットプリントを維持し、MIT-BIH Arrhythmia Datasetの0.99 (V1) と0.98 (V2) の分類精度を正常な正弦波リズム、左バンドル分岐ブロック、右バンドルブランチブロック、心房前期収縮、心室収縮の5つのクラスで達成した。
臨床透明性と関連性を確保するため,Shapley Additive Explanations と Gradient-weighted Class Activation Mapping を統合し,局所的およびグローバルな解釈性を実現する。
これらの手法は、QRS複合体やT波のような生理学的に意味のあるパターンを強調し、モデルの予測に寄与する。
また、性能効率のトレードオフについても論じ、データセットの多様性と一般化可能性に関する現在の制限に対処する。
本研究は, 実用, ウェアラブル, 組込みECGモニタリングシステムにおいて, 解釈可能性, 予測精度, 計算効率の両立の可能性を示すものである。
関連論文リスト
- rECGnition_v2.0: Self-Attentive Canonical Fusion of ECG and Patient Data using deep learning for effective Cardiac Diagnostics [0.56337958460022]
この研究は、MIT-BIH Arrhythmia データセットを用いて、様々な不整脈のクラスに対する rECGnition_v2.0 の効率を評価する。
rECGnition_v2.0のコンパクトなアーキテクチャフットプリントは、トレーニング可能なパラメータがより少ないことで特徴付けられ、解釈可能性やスケーラビリティなどいくつかの利点を解き放った。
論文 参考訳(メタデータ) (2025-02-22T15:16:46Z) - Leveraging Cardiovascular Simulations for In-Vivo Prediction of Cardiac Biomarkers [43.17768785084301]
我々は、新たに構築された心臓シミュレーションの大規模なデータセットに基づいて、無傷神経後部推定器を訓練する。
シミュレーションデータと実世界の測定値との整合性を改善するために,要素モデリング効果を取り入れた。
提案するフレームワークは,実世界のデータに対する予測能力を向上するために,インバイブなデータソースをさらに統合することができる。
論文 参考訳(メタデータ) (2024-12-23T13:05:17Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
そこで本研究では,周期型ECG表現学習手法を提案する。
心房細動患者の心電図ではRR間隔の不規則性やP波の欠如を考慮し, 経時的および経時的表現のための特定の事前訓練タスクを開発する。
本手法は,発作/持続性心房細動検出のためのBTCHデータセット,textiti., 0.953/0.996におけるAUCの顕著な性能を示す。
論文 参考訳(メタデータ) (2024-10-08T10:03:52Z) - Advanced Neural Network Architecture for Enhanced Multi-Lead ECG Arrhythmia Detection through Optimized Feature Extraction [0.0]
不規則な心臓リズムを特徴とする不整脈は、深刻な診断課題を呈する。
本研究では,不整脈分類の複雑さに対処するために,ディープラーニング技術を活用した革新的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-04-13T19:56:15Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
ノイズと品質の悪い録音は、モバイルヘルスシステムを使って収集された信号にとって大きな問題である。
近年の研究では、確率的時系列モデルによるECGの欠落値の計算が検討されている。
本稿では,様々な健康状態の事前情報として,テンプレート誘導型拡散確率モデル(DDPM)PulseDiffを提案する。
論文 参考訳(メタデータ) (2023-10-24T11:34:15Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
心電図不整脈分類におけるアナログ計算と深層学習を組み合わせた統合的アプローチを提案する。
本稿では,低消費電力で高精度にアーカイブするハードウェア効率と完全アナログ不整脈分類アーキテクチャであるEKGNetを提案する。
論文 参考訳(メタデータ) (2023-10-24T02:37:49Z) - Global ECG Classification by Self-Operational Neural Networks with
Feature Injection [25.15075119957447]
コンパクトな1次元自己組織化オペレーショナルニューラルネットワーク(Self-ONN)を用いた患者間心電図分類のための新しいアプローチを提案する。
我々は1D Self-ONN層を用いてECGデータから形態表現を自動的に学習し、Rピーク付近のECG波形の形状を捉えることができた。
提案手法は,MIT-BIH ベンチマークデータベースを用いて,これまでで最高の分類性能を達成している。
論文 参考訳(メタデータ) (2022-04-07T22:49:18Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z) - ECG-Based Heart Arrhythmia Diagnosis Through Attentional Convolutional
Neural Networks [9.410102957429705]
本稿では,意図に基づく畳み込みニューラルネットワーク(ABCNN)を用いて生の心電図信号に対処し,正確な不整脈検出のための情報的依存関係を自動的に抽出する手法を提案する。
我々の主な課題は、正常な心拍から不整脈を見つけ、その間に5種類の不整脈から心疾患を正確に認識することである。
実験の結果,提案するABCNNは広く使用されているベースラインよりも優れていた。
論文 参考訳(メタデータ) (2021-08-18T14:55:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。