論文の概要: EXGnet: a single-lead explainable-AI guided multiresolution network with train-only quantitative features for trustworthy ECG arrhythmia classification
- arxiv url: http://arxiv.org/abs/2506.12404v2
- Date: Wed, 23 Jul 2025 06:58:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-24 14:06:49.392683
- Title: EXGnet: a single-lead explainable-AI guided multiresolution network with train-only quantitative features for trustworthy ECG arrhythmia classification
- Title(参考訳): EXGnet: 信頼できる心電図不整脈分類のための列車のみの定量的特徴を持つ単誘導型AIガイド型マルチレゾリューションネットワーク
- Authors: Tushar Talukder Showrav, Soyabul Islam Lincoln, Md. Kamrul Hasan,
- Abstract要約: シングルリード信号に適した新しいECG不整脈分類ネットワークであるEXGnetを提案する。
トレーニング中のXAI監督は、そのモデルの注意を臨床的に関連する心電図領域に向ける。
短信号と長期信号の両方を効率的に捉えるために,革新的なマルチレゾリューションブロックを導入する。
- 参考スコア(独自算出の注目度): 1.5162243843944596
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning has significantly propelled the performance of ECG arrhythmia classification, yet its clinical adoption remains hindered by challenges in interpretability and deployment on resource-constrained edge devices. To bridge this gap, we propose EXGnet, a novel and reliable ECG arrhythmia classification network tailored for single-lead signals, specifically designed to balance high accuracy, explainability, and edge compatibility. EXGnet integrates XAI supervision during training via a normalized cross-correlation based loss, directing the model's attention to clinically relevant ECG regions, similar to a cardiologist's focus. This supervision is driven by automatically generated ground truth, derived through an innovative heart rate variability-based approach, without the need for manual annotation. To enhance classification accuracy without compromising deployment simplicity, we incorporate quantitative ECG features during training. These enrich the model with multi-domain knowledge but are excluded during inference, keeping the model lightweight for edge deployment. Additionally, we introduce an innovative multiresolution block to efficiently capture both short and long-term signal features while maintaining computational efficiency. Rigorous evaluation on the Chapman and Ningbo benchmark datasets validates the supremacy of EXGnet, which achieves average five-fold accuracies of 98.762% and 96.932%, and F1-scores of 97.910% and 95.527%, respectively. Comprehensive ablation studies and both quantitative and qualitative interpretability assessment confirm that the XAI guidance is pivotal, demonstrably enhancing the model's focus and trustworthiness. Overall, EXGnet sets a new benchmark by combining high-performance arrhythmia classification with interpretability, paving the way for more trustworthy and accessible portable ECG based health monitoring systems.
- Abstract(参考訳): 深層学習はECG不整脈分類の性能を著しく向上させたが、その臨床応用は、リソース制約されたエッジデバイスへの解釈可能性と展開の課題によって妨げられている。
このギャップを埋めるために,単一リード信号に適した新鮮で信頼性の高いECG不整脈分類ネットワークであるEXGnetを提案する。
EXGnetは、正常化された相互相関に基づく損失を通じてトレーニング中のXAI監視を統合し、そのモデルの注意を、心臓科医の焦点と同様、臨床的に関連するECG領域に向ける。
この監督は、手動のアノテーションを必要とせず、革新的な心拍変動に基づくアプローチによって引き起こされた、自動的に生成された真実によって引き起こされる。
デプロイメントの単純さを損なうことなく、分類精度を向上させるため、トレーニング中に定量的ECG機能を組み込んだ。
これらはモデルをマルチドメインの知識で豊かにしますが、推論中に除外され、モデルをエッジデプロイメント用に軽量に保ちます。
さらに、計算効率を保ちながら、短信号と長期信号の両方を効率的に捕捉する革新的なマルチレゾリューションブロックを導入する。
ChapmanとNingboのベンチマークデータセットの厳密な評価は、平均5倍精度98.762%、96.932%、F1スコア97.910%、95.527%を達成するEXGnetの優位性を検証している。
包括的アブレーション研究と定量的および定性的な解釈可能性評価は、XAIガイダンスが決定的であり、明らかにモデルの焦点と信頼性を高めていることを裏付ける。
全体として、EXGnetは、高性能不整脈分類と解釈可能性を組み合わせることで、より信頼性が高くアクセス可能なECGベースの健康モニタリングシステムへの道を開くことで、新しいベンチマークを設定している。
関連論文リスト
- ArrhythmiaVision: Resource-Conscious Deep Learning Models with Visual Explanations for ECG Arrhythmia Classification [0.0]
本稿では,エッジデバイス上での効率的なリアルタイム不整脈分類に最適化されたArrhythmiNet V1とV2を提案する。
MobileNetの深い分離可能な畳み込み設計にインスパイアされたこれらのモデルは、それぞれ302.18KBと157.76KBのメモリフットプリントを維持している。
本研究は, 実用, ウェアラブル, 組込みECGモニタリングシステムにおいて, 解釈可能性, 予測精度, 計算効率の両立の可能性を示すものである。
論文 参考訳(メタデータ) (2025-04-30T18:22:45Z) - GEM: Empowering MLLM for Grounded ECG Understanding with Time Series and Images [43.65650710265957]
GEMは,第1回MLLM統合ECG時系列,第12回リードECG画像,地上および臨床のECG解釈のためのテキストである。
GEMは、3つのコアイノベーションを通じて機能的解析、エビデンス駆動推論、および臨床医のような診断プロセスを可能にする。
基礎心電図理解におけるMLLMの能力を評価するために,臨床動機付けのベンチマークであるグラウンドドECGタスクを提案する。
論文 参考訳(メタデータ) (2025-03-08T05:48:53Z) - AmpliNetECG12: A lightweight SoftMax-based relativistic amplitude amplification architecture for 12 lead ECG classification [0.0]
本研究では,心臓の異常を迅速かつ正確に診断することを目的とした,新しいディープラーニングアーキテクチャを提案する。
我々は、ECG偏向の可視性を改善するために、aSoftMaxと呼ばれる新しいアクティベーション関数を考案した。
心臓疾患の診断では84%の異常な精度が得られた。
論文 参考訳(メタデータ) (2024-11-21T07:28:24Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
そこで本研究では,周期型ECG表現学習手法を提案する。
心房細動患者の心電図ではRR間隔の不規則性やP波の欠如を考慮し, 経時的および経時的表現のための特定の事前訓練タスクを開発する。
本手法は,発作/持続性心房細動検出のためのBTCHデータセット,textiti., 0.953/0.996におけるAUCの顕著な性能を示す。
論文 参考訳(メタデータ) (2024-10-08T10:03:52Z) - ConvexECG: Lightweight and Explainable Neural Networks for Personalized, Continuous Cardiac Monitoring [43.23305904110984]
ConvexECGは、単誘導データから6誘導心電図を再構成するための説明可能かつ資源効率のよい方法である。
我々は、ConvexECGがより大きなニューラルネットワークに匹敵する精度を実現し、計算オーバーヘッドを大幅に削減することを示した。
論文 参考訳(メタデータ) (2024-09-19T06:14:30Z) - The Rlign Algorithm for Enhanced Electrocardiogram Analysis through R-Peak Alignment for Explainable Classification and Clustering [34.88496713576635]
我々は,サポートベクタマシンや主成分分析などの浅層学習技術をECG信号処理に再導入することを目指している。
そこで我々は,ECG信号を完全に構造化されたフォーマットに効果的に再構成する変換を開発し,評価した。
我々のアプローチは、特に限られたトレーニングデータを扱う場合、CNNよりも浅い機械学習手法に顕著な優位性を示す。
論文 参考訳(メタデータ) (2024-07-22T11:34:47Z) - DDSB: An Unsupervised and Training-free Method for Phase Detection in Echocardiography [37.32413956117856]
本研究では,End-Diastolic (ED) フレームとEnd-Systolic (ES) フレームを識別するための教師なしおよびトレーニング不要な手法を提案する。
アンカー点の同定と方向変形解析により,初期セグメンテーション画像の精度への依存性を効果的に低減する。
本手法は,学習モデルと同等の精度を,関連する欠点を伴わずに達成する。
論文 参考訳(メタデータ) (2024-03-19T14:51:01Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
心電図不整脈分類におけるアナログ計算と深層学習を組み合わせた統合的アプローチを提案する。
本稿では,低消費電力で高精度にアーカイブするハードウェア効率と完全アナログ不整脈分類アーキテクチャであるEKGNetを提案する。
論文 参考訳(メタデータ) (2023-10-24T02:37:49Z) - ECG-CL: A Comprehensive Electrocardiogram Interpretation Method Based on
Continual Learning [20.465733855762835]
心電図(ECG)モニタリングは心血管疾患(CVD)早期診断の最も強力な手法の一つである。
古典的なルールベースのアルゴリズムは、今ではディープラーニングベースの手法によって完全にパフォーマンスが向上している。
本稿では,高解像度の低レベルセマンティック情報を一括して保持できるマルチレゾリューションモデルを提案する。
論文 参考訳(メタデータ) (2023-04-10T15:19:00Z) - HARDC : A novel ECG-based heartbeat classification method to detect
arrhythmia using hierarchical attention based dual structured RNN with
dilated CNN [3.8791511769387625]
不整脈分類のための拡張CNN (HARDC) 法を用いたハイブリッド階層型双方向リカレントニューラルネットワークを開発した。
提案したHARDCは、拡張CNNと双方向リカレントニューラルネットワークユニット(BiGRU-BiLSTM)アーキテクチャをフル活用して、融合機能を生成する。
以上の結果から,複数種類の不整脈信号の分類を自動化し,高度に計算した手法が有望であることが示唆された。
論文 参考訳(メタデータ) (2023-03-06T13:26:29Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - SEVGGNet-LSTM: a fused deep learning model for ECG classification [38.747030782394646]
入力ECG信号はまずセグメント化され、正規化され、その後、特徴抽出と分類のためにVGGとLSTMネットワークに入力される。
注目機構(SEブロック)をコアネットワークに組み込んで重要な特徴の重み付けを行う。
論文 参考訳(メタデータ) (2022-10-31T07:36:48Z) - Global ECG Classification by Self-Operational Neural Networks with
Feature Injection [25.15075119957447]
コンパクトな1次元自己組織化オペレーショナルニューラルネットワーク(Self-ONN)を用いた患者間心電図分類のための新しいアプローチを提案する。
我々は1D Self-ONN層を用いてECGデータから形態表現を自動的に学習し、Rピーク付近のECG波形の形状を捉えることができた。
提案手法は,MIT-BIH ベンチマークデータベースを用いて,これまでで最高の分類性能を達成している。
論文 参考訳(メタデータ) (2022-04-07T22:49:18Z) - DENS-ECG: A Deep Learning Approach for ECG Signal Delineation [15.648061765081264]
本稿では,心拍のリアルタイムセグメンテーションのためのディープラーニングモデルを提案する。
提案アルゴリズムはDENS-ECGアルゴリズムと呼ばれ、畳み込みニューラルネットワーク(CNN)と長短期記憶(LSTM)モデルを組み合わせたものである。
論文 参考訳(メタデータ) (2020-05-18T13:13:41Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z) - Multi-Lead ECG Classification via an Information-Based Attention
Convolutional Neural Network [1.1720399305661802]
1次元畳み込みニューラルネットワーク(CNN)は、広範に分類されるタスクに有効であることが証明されている。
残差接続を実装し,入力特徴マップ内の異なるチャネルに含まれる情報から重みを学習できる構造を設計する。
分類タスクにおいて、特定のモデルセグメントのパフォーマンスを監視するために平均平方偏差という指標を導入する。
論文 参考訳(メタデータ) (2020-03-25T02:28:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。