Sufficient Decision Proxies for Decision-Focused Learning
- URL: http://arxiv.org/abs/2505.03953v1
- Date: Tue, 06 May 2025 20:10:17 GMT
- Title: Sufficient Decision Proxies for Decision-Focused Learning
- Authors: Noah Schutte, Grigorii Veviurko, Krzysztof Postek, Neil Yorke-Smith,
- Abstract summary: Decision-focused learning aims at learning a predictive model such that decision quality, instead of prediction accuracy, is maximized.<n>This paper investigates for the first time problem properties that justify using either assumption.<n>We show the effectiveness of presented approaches in experiments on problems with continuous and discrete variables, as well as uncertainty in the objective function and in the constraints.
- Score: 2.7143637678944454
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: When solving optimization problems under uncertainty with contextual data, utilizing machine learning to predict the uncertain parameters is a popular and effective approach. Decision-focused learning (DFL) aims at learning a predictive model such that decision quality, instead of prediction accuracy, is maximized. Common practice here is to predict a single value for each uncertain parameter, implicitly assuming that there exists a (single-scenario) deterministic problem approximation (proxy) that is sufficient to obtain an optimal decision. Other work assumes the opposite, where the underlying distribution needs to be estimated. However, little is known about when either choice is valid. This paper investigates for the first time problem properties that justify using either assumption. Using this, we present effective decision proxies for DFL, with very limited compromise on the complexity of the learning task. We show the effectiveness of presented approaches in experiments on problems with continuous and discrete variables, as well as uncertainty in the objective function and in the constraints.
Related papers
- Aligning Learning and Endogenous Decision-Making [5.84228364962637]
We introduce an end-to-end method under endogenous uncertainty to train ML models to be aware of their downstream.<n>We also introduce a robust optimization variant that accounts for uncertainty in ML models.<n>We prove guarantees that this robust approach can capture near-optimal decisions with high probability as a function of data.
arXiv Detail & Related papers (2025-07-01T15:22:56Z) - A Principled Approach to Randomized Selection under Uncertainty: Applications to Peer Review and Grant Funding [68.43987626137512]
We propose a principled framework for randomized decision-making based on interval estimates of the quality of each item.<n>We introduce MERIT, an optimization-based method that maximizes the worst-case expected number of top candidates selected.<n>We prove that MERIT satisfies desirable axiomatic properties not guaranteed by existing approaches.
arXiv Detail & Related papers (2025-06-23T19:59:30Z) - Treatment Effect Estimation for Optimal Decision-Making [65.30942348196443]
We study optimal decision-making based on two-stage CATE estimators.<n>We propose a novel two-stage learning objective that retargets the CATE to balance CATE estimation error and decision performance.
arXiv Detail & Related papers (2025-05-19T13:24:57Z) - Online Decision-Focused Learning [63.83903681295497]
Decision-focused learning (DFL) is an increasingly popular paradigm for training predictive models whose outputs are used in decision-making tasks.<n>We investigate DFL in dynamic environments where the objective function does not evolve over time.<n>We establish bounds on the expected dynamic regret, both when decision space is a simplex and when it is a general bounded convex polytope.
arXiv Detail & Related papers (2025-05-19T10:40:30Z) - Information-Theoretic Safe Bayesian Optimization [59.758009422067005]
We consider a sequential decision making task, where the goal is to optimize an unknown function without evaluating parameters that violate an unknown (safety) constraint.
Most current methods rely on a discretization of the domain and cannot be directly extended to the continuous case.
We propose an information-theoretic safe exploration criterion that directly exploits the GP posterior to identify the most informative safe parameters to evaluate.
arXiv Detail & Related papers (2024-02-23T14:31:10Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Decision-focused predictions via pessimistic bilevel optimization: a computational study [0.7499722271664147]
Uncertainty in optimization parameters is an important and longstanding challenge.
We build predictive models that measure a emphregret measure on decisions taken with them.
We show various computational techniques to achieve tractability.
arXiv Detail & Related papers (2023-12-29T15:05:00Z) - Learning Deterministic Surrogates for Robust Convex QCQPs [0.0]
We propose a double implicit layer model for training prediction models with respect to robust decision loss.
The first layer solves a deterministic version of the problem, the second layer evaluates the worst case realisation for an uncertainty set.
This enables us to learn model parameterisations that lead to robust decisions while only solving a simpler deterministic problem at test time.
arXiv Detail & Related papers (2023-12-19T16:56:13Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then- framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This approach can be inefficient and requires handcrafted, problem-specific rules for backpropagation through the optimization step.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by predictive models.
arXiv Detail & Related papers (2023-11-22T01:32:06Z) - Score Function Gradient Estimation to Widen the Applicability of Decision-Focused Learning [17.962860438133312]
Decision-focused learning (DFL) paradigm overcomes limitation by training to directly minimize a task loss, e.g. regret.
We propose an alternative method that makes no such assumptions, it combines smoothing with score function estimation which works on any task loss.
Experiments show that it typically requires more epochs, but that it is on par with specialized methods and performs especially well for the difficult case of problems with uncertainty in the constraints, in terms of solution quality, scalability, or both.
arXiv Detail & Related papers (2023-07-11T12:32:13Z) - Leaving the Nest: Going Beyond Local Loss Functions for
Predict-Then-Optimize [57.22851616806617]
We show that our method achieves state-of-the-art results in four domains from the literature.
Our approach outperforms the best existing method by nearly 200% when the localness assumption is broken.
arXiv Detail & Related papers (2023-05-26T11:17:45Z) - Learning MDPs from Features: Predict-Then-Optimize for Sequential
Decision Problems by Reinforcement Learning [52.74071439183113]
We study the predict-then-optimize framework in the context of sequential decision problems (formulated as MDPs) solved via reinforcement learning.
Two significant computational challenges arise in applying decision-focused learning to MDPs.
arXiv Detail & Related papers (2021-06-06T23:53:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.