SEVA: Leveraging Single-Step Ensemble of Vicinal Augmentations for Test-Time Adaptation
- URL: http://arxiv.org/abs/2505.04087v1
- Date: Wed, 07 May 2025 02:58:37 GMT
- Title: SEVA: Leveraging Single-Step Ensemble of Vicinal Augmentations for Test-Time Adaptation
- Authors: Zixuan Hu, Yichun Hu, Ling-Yu Duan,
- Abstract summary: Test-Time adaptation (TTA) aims to enhance model robustness against distribution shifts through rapid model adaptation during inference.<n> augmentation strategies can effectively unleash the potential of reliable samples, but the rapidly growing computational cost impedes their real-time application.<n>We propose a novel TTA approach named Single-step Ensemble of Vicinal Augmentations (SEVA) which can take advantage of data augmentations without increasing the computational burden.
- Score: 29.441669360316418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Test-Time adaptation (TTA) aims to enhance model robustness against distribution shifts through rapid model adaptation during inference. While existing TTA methods often rely on entropy-based unsupervised training and achieve promising results, the common practice of a single round of entropy training is typically unable to adequately utilize reliable samples, hindering adaptation efficiency. In this paper, we discover augmentation strategies can effectively unleash the potential of reliable samples, but the rapidly growing computational cost impedes their real-time application. To address this limitation, we propose a novel TTA approach named Single-step Ensemble of Vicinal Augmentations (SEVA), which can take advantage of data augmentations without increasing the computational burden. Specifically, instead of explicitly utilizing the augmentation strategy to generate new data, SEVA develops a theoretical framework to explore the impacts of multiple augmentations on model adaptation and proposes to optimize an upper bound of the entropy loss to integrate the effects of multiple rounds of augmentation training into a single step. Furthermore, we discover and verify that using the upper bound as the loss is more conducive to the selection mechanism, as it can effectively filter out harmful samples that confuse the model. Combining these two key advantages, the proposed efficient loss and a complementary selection strategy can simultaneously boost the potential of reliable samples and meet the stringent time requirements of TTA. The comprehensive experiments on various network architectures across challenging testing scenarios demonstrate impressive performances and the broad adaptability of SEVA. The code will be publicly available.
Related papers
- Neutralizing Token Aggregation via Information Augmentation for Efficient Test-Time Adaptation [59.1067331268383]
Test-Time Adaptation (TTA) has emerged as an effective solution for adapting Vision Transformers (ViT) to distribution shifts without additional training data.<n>To reduce inference cost, plug-and-play token aggregation methods merge redundant tokens in ViTs to reduce total processed tokens.<n>We formalize this problem as Efficient Test-Time Adaptation (ETTA), seeking to preserve the adaptation capability of TTA while reducing inference latency.
arXiv Detail & Related papers (2025-08-05T12:40:55Z) - Free on the Fly: Enhancing Flexibility in Test-Time Adaptation with Online EM [13.924553294859315]
FreeTTA is a training-free and universally available method that makes no assumptions.<n>This study proposes FreeTTA, a training-free and universally available method that makes no assumptions.
arXiv Detail & Related papers (2025-07-09T16:03:07Z) - Orthogonal Projection Subspace to Aggregate Online Prior-knowledge for Continual Test-time Adaptation [67.80294336559574]
Continual Test Time Adaptation (CTTA) is a task that requires a source pre-trained model to continually adapt to new scenarios.<n>We propose a novel pipeline, Orthogonal Projection Subspace to aggregate online Prior-knowledge, dubbed OoPk.
arXiv Detail & Related papers (2025-06-23T18:17:39Z) - SETS: Leveraging Self-Verification and Self-Correction for Improved Test-Time Scaling [44.11609084435251]
This paper introduces Self-Enhanced Test-Time Scaling (SETS), a new approach that overcomes limitations by strategically combining parallel and sequential techniques.<n>SETS exploits the inherent self-verification and self-correction capabilities of Large Language Models, unifying sampling, verification, and correction within a single framework.
arXiv Detail & Related papers (2025-01-31T17:03:16Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models.
We propose Meet-In-The-Middle based MITA, which introduces energy-based optimization to encourage mutual adaptation of the model and data from opposing directions.
arXiv Detail & Related papers (2024-10-12T07:02:33Z) - IT$^3$: Idempotent Test-Time Training [95.78053599609044]
Deep learning models often struggle when deployed in real-world settings due to distribution shifts between training and test data.<n>We present Idempotent Test-Time Training (IT$3$), a novel approach that enables on-the-fly adaptation to distribution shifts using only the current test instance.<n>Our results suggest that idempotence provides a universal principle for test-time adaptation that generalizes across domains and architectures.
arXiv Detail & Related papers (2024-10-05T15:39:51Z) - ETAGE: Enhanced Test Time Adaptation with Integrated Entropy and Gradient Norms for Robust Model Performance [18.055032898349438]
Test time adaptation (TTA) equips deep learning models to handle unseen test data that deviates from the training distribution.
We introduce ETAGE, a refined TTA method that integrates entropy minimization with gradient norms and PLPD.
Our method prioritizes samples that are less likely to cause instability by combining high entropy with high gradient norms out of adaptation.
arXiv Detail & Related papers (2024-09-14T01:25:52Z) - Enhancing Test Time Adaptation with Few-shot Guidance [35.13317598777832]
Deep neural networks often encounter significant performance drops while facing with domain shifts between training (source) and test (target) data.<n>Test Time Adaptation (TTA) methods have been proposed to adapt pre-trained source model to handle out-of-distribution streaming target data.<n>We develop Few-Shot Test Time Adaptation (FS-TTA), a novel and practical setting that utilizes a few-shot support set on top of TTA.
arXiv Detail & Related papers (2024-09-02T15:50:48Z) - Test-Time Model Adaptation with Only Forward Passes [68.11784295706995]
Test-time adaptation has proven effective in adapting a given trained model to unseen test samples with potential distribution shifts.
We propose a test-time Forward-Optimization Adaptation (FOA) method.
FOA runs on quantized 8-bit ViT, outperforms gradient-based TENT on full-precision 32-bit ViT, and achieves an up to 24-fold memory reduction on ImageNet-C.
arXiv Detail & Related papers (2024-04-02T05:34:33Z) - REALM: Robust Entropy Adaptive Loss Minimization for Improved
Single-Sample Test-Time Adaptation [5.749155230209001]
Fully-test-time adaptation (F-TTA) can mitigate performance loss due to distribution shifts between train and test data.
We present a general framework for improving robustness of F-TTA to noisy samples, inspired by self-paced learning and robust loss functions.
arXiv Detail & Related papers (2023-09-07T18:44:58Z) - Efficient Test-Time Model Adaptation without Forgetting [60.36499845014649]
Test-time adaptation seeks to tackle potential distribution shifts between training and testing data.
We propose an active sample selection criterion to identify reliable and non-redundant samples.
We also introduce a Fisher regularizer to constrain important model parameters from drastic changes.
arXiv Detail & Related papers (2022-04-06T06:39:40Z) - Listen, Adapt, Better WER: Source-free Single-utterance Test-time
Adaptation for Automatic Speech Recognition [65.84978547406753]
Test-time Adaptation aims to adapt the model trained on source domains to yield better predictions for test samples.
Single-Utterance Test-time Adaptation (SUTA) is the first TTA study in speech area to our best knowledge.
arXiv Detail & Related papers (2022-03-27T06:38:39Z) - Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited
Data [125.7135706352493]
Generative adversarial networks (GANs) typically require ample data for training in order to synthesize high-fidelity images.
Recent studies have shown that training GANs with limited data remains formidable due to discriminator overfitting.
This paper introduces a novel strategy called Adaptive Pseudo Augmentation (APA) to encourage healthy competition between the generator and the discriminator.
arXiv Detail & Related papers (2021-11-12T18:13:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.