論文の概要: Polynomial-Time Relational Probabilistic Inference in Open Universes
- arxiv url: http://arxiv.org/abs/2505.04115v1
- Date: Wed, 07 May 2025 04:14:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-08 19:07:35.974326
- Title: Polynomial-Time Relational Probabilistic Inference in Open Universes
- Title(参考訳): 開宇宙における多項式時間関係確率推論
- Authors: Luise Ge, Brendan Juba, Kris Nilsson,
- Abstract要約: 本稿では,使用する言語の表現力と推論による計算問題のトラクタビリティを両立させる一階確率推定手法を提案する。
具体的には、期待の2乗論理をリレーショナルセッティングに拡張する。
与えられた次数と大きさの証明によって証明可能な最も厳密な境界を導出し、固定度に対する2乗の総和の完全性を確立することができる。
- 参考スコア(独自算出の注目度): 14.312814866832804
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reasoning under uncertainty is a fundamental challenge in Artificial Intelligence. As with most of these challenges, there is a harsh dilemma between the expressive power of the language used, and the tractability of the computational problem posed by reasoning. Inspired by human reasoning, we introduce a method of first-order relational probabilistic inference that satisfies both criteria, and can handle hybrid (discrete and continuous) variables. Specifically, we extend sum-of-squares logic of expectation to relational settings, demonstrating that lifted reasoning in the bounded-degree fragment for knowledge bases of bounded quantifier rank can be performed in polynomial time, even with an a priori unknown and/or countably infinite set of objects. Crucially, our notion of tractability is framed in proof-theoretic terms, which extends beyond the syntactic properties of the language or queries. We are able to derive the tightest bounds provable by proofs of a given degree and size and establish completeness in our sum-of-squares refutations for fixed degrees.
- Abstract(参考訳): 不確実性の下での推論は、人工知能の根本的な課題である。
これらの課題のほとんどがそうであるように、使用する言語の表現力と、推論によって引き起こされる計算問題のトラクタビリティとの間には厳しいジレンマがある。
人間の推論に触発されて、両基準を満たす一階関係確率推定法を導入し、ハイブリッド変数(離散変数と連続変数)を扱えるようにした。
具体的には,有界量子化器ランクの知識ベースに対する有界度フラグメントの持ち上げ推論が,事前の未知や無数の無限のオブジェクトであっても多項式時間で実行可能であることを示す。
重要なことに、トラクタビリティの概念は、言語やクエリの構文的性質を超えて拡張された証明理論的な用語でフレーム化されています。
与えられた次数と大きさの証明によって証明可能な最も厳密な境界を導出し、固定度に対する2乗の総和の完全性を確立することができる。
関連論文リスト
- To Believe or Not to Believe Your LLM [51.2579827761899]
大規模言語モデル(LLM)における不確実性定量化について検討する。
疫学的な不確実性が大きい場合にのみ確実に検出できる情報理論の指標を導出する。
定式化の利点を実証する一連の実験を行う。
論文 参考訳(メタデータ) (2024-06-04T17:58:18Z) - Mitigating Misleading Chain-of-Thought Reasoning with Selective Filtering [59.495717939664246]
大規模言語モデルは、複雑な問題を解くためにチェーン・オブ・ソート(CoT)推論技術を活用することで、顕著な能力を示した。
本稿では,選択フィルタリング推論(SelF-Reasoner)と呼ばれる新しい手法を提案する。
SelF-ReasonerはScienceQA、ECQA、LastLetterタスクに対して、微調整されたT5ベースラインを一貫して改善する。
論文 参考訳(メタデータ) (2024-03-28T06:28:35Z) - When Is Inductive Inference Possible? [3.4991031406102238]
オンライン学習理論への新たなリンクを確立することにより,帰納的推論の厳密な特徴付けを行う。
帰納的推論が可能であることは、仮説クラスがオンライン学習可能なクラスの可算和である場合に限る。
私たちの主要な技術ツールは、新しい一様でないオンライン学習フレームワークです。
論文 参考訳(メタデータ) (2023-11-30T20:02:25Z) - A Semantic Approach to Decidability in Epistemic Planning (Extended
Version) [72.77805489645604]
我々は決定可能性を達成するために新しい意味論的アプローチを用いる。
具体的には、知識の論理S5$_n$と(知識)可換性と呼ばれる相互作用公理を拡大する。
我々は,本フレームワークが,独立した知識である共通知識の有限的非固定点的特徴を認めていることを証明した。
論文 参考訳(メタデータ) (2023-07-28T11:26:26Z) - An Embedding-based Approach to Inconsistency-tolerant Reasoning with
Inconsistent Ontologies [12.760301272393898]
本稿では,公理の埋め込みに基づく一貫性のない意味論による推論手法を提案する。
組込みに基づく手法は、最大一貫した部分集合に基づく既存の矛盾耐性推論手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-04-04T09:38:02Z) - Admissibility in Strength-based Argumentation: Complexity and Algorithms
(Extended Version with Proofs) [1.5828697880068698]
我々は、適応性に基づく意味論の強度に基づく論証フレームワーク(StrAF)への適応について研究する。
特に文献で定義された強い許容性は望ましい性質、すなわちDungの基本的な補題を満たさないことを示す。
計算(強弱)拡張に対する擬ブール制約の翻訳を提案する。
論文 参考訳(メタデータ) (2022-07-05T18:42:04Z) - Causal Expectation-Maximisation [70.45873402967297]
ポリツリーグラフを特徴とするモデルにおいても因果推論はNPハードであることを示す。
我々は因果EMアルゴリズムを導入し、分類的表現変数のデータから潜伏変数の不確かさを再構築する。
我々は、反事実境界が構造方程式の知識なしにしばしば計算できるというトレンドのアイデアには、目立たずの制限があるように思える。
論文 参考訳(メタデータ) (2020-11-04T10:25:13Z) - Learning Implicitly with Noisy Data in Linear Arithmetic [94.66549436482306]
PAC-セマンティックスにおける暗黙学習を拡張し、線形算術の言語における間隔としきい値の不確実性を扱う。
最適線形プログラミング対象制約の学習に対する我々の暗黙的アプローチは、実際的な明示的アプローチよりも著しく優れていることを示す。
論文 参考訳(メタデータ) (2020-10-23T19:08:46Z) - Probabilistic Reasoning across the Causal Hierarchy [10.138180861883635]
私たちの言語は厳格に表現力を高めている。
それぞれの言語に対する満足度と妥当性は空間的に決定可能であることを示す。
論文 参考訳(メタデータ) (2020-01-09T08:52:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。