Large Language Models are often politically extreme, usually ideologically inconsistent, and persuasive even in informational contexts
- URL: http://arxiv.org/abs/2505.04171v1
- Date: Wed, 07 May 2025 06:53:59 GMT
- Title: Large Language Models are often politically extreme, usually ideologically inconsistent, and persuasive even in informational contexts
- Authors: Nouar Aldahoul, Hazem Ibrahim, Matteo Varvello, Aaron Kaufman, Talal Rahwan, Yasir Zaki,
- Abstract summary: Large Language Models (LLMs) are a transformational technology, fundamentally changing how people obtain information and interact with the world.<n>We show that LLMs' apparently small overall partisan preference is the net result of offsetting extreme views on specific topics.<n>In a randomized experiment, we show that LLMs can promulgate their preferences into political persuasiveness even in information-seeking contexts.
- Score: 1.9782163071901029
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are a transformational technology, fundamentally changing how people obtain information and interact with the world. As people become increasingly reliant on them for an enormous variety of tasks, a body of academic research has developed to examine these models for inherent biases, especially political biases, often finding them small. We challenge this prevailing wisdom. First, by comparing 31 LLMs to legislators, judges, and a nationally representative sample of U.S. voters, we show that LLMs' apparently small overall partisan preference is the net result of offsetting extreme views on specific topics, much like moderate voters. Second, in a randomized experiment, we show that LLMs can promulgate their preferences into political persuasiveness even in information-seeking contexts: voters randomized to discuss political issues with an LLM chatbot are as much as 5 percentage points more likely to express the same preferences as that chatbot. Contrary to expectations, these persuasive effects are not moderated by familiarity with LLMs, news consumption, or interest in politics. LLMs, especially those controlled by private companies or governments, may become a powerful and targeted vector for political influence.
Related papers
- Democratic or Authoritarian? Probing a New Dimension of Political Biases in Large Language Models [72.89977583150748]
We propose a novel methodology to assess how Large Language Models align with broader geopolitical value systems.<n>We find that LLMs generally favor democratic values and leaders, but exhibit increases favorability toward authoritarian figures when prompted in Mandarin.
arXiv Detail & Related papers (2025-06-15T07:52:07Z) - Large Means Left: Political Bias in Large Language Models Increases with Their Number of Parameters [0.571853823214391]
Large language models (LLMs) are predominantly used by many as a primary source of information for various topics.<n>LLMs frequently make factual errors, fabricate data (hallucinations), or present biases, exposing users to misinformation and influencing opinions.<n>We quantify the political bias of popular LLMs in the context of the recent vote of the German Bundestag using the score produced by the Wahl-O-Mat.
arXiv Detail & Related papers (2025-05-07T13:18:41Z) - Through the LLM Looking Glass: A Socratic Probing of Donkeys, Elephants, and Markets [42.55423041662188]
The study aims to directly measure the models' biases rather than relying on external interpretations.<n>Our results reveal a consistent preference of Democratic over Republican positions across all models.<n>In economic topics, biases vary among Western LLMs, while those developed in China lean more strongly toward socialism.
arXiv Detail & Related papers (2025-03-20T19:40:40Z) - Unpacking Political Bias in Large Language Models: A Cross-Model Comparison on U.S. Politics [6.253258189994455]
Political bias, as a universal phenomenon in human society, may be transferred to Large Language Models.<n>Political biases evolve with model scale and release date, and are also influenced by regional factors of LLMs.
arXiv Detail & Related papers (2024-12-21T19:42:40Z) - Large Language Models Reflect the Ideology of their Creators [71.65505524599888]
Large language models (LLMs) are trained on vast amounts of data to generate natural language.<n>This paper shows that the ideological stance of an LLM appears to reflect the worldview of its creators.
arXiv Detail & Related papers (2024-10-24T04:02:30Z) - Biased AI can Influence Political Decision-Making [64.9461133083473]
This paper presents two experiments investigating the effects of partisan bias in large language models (LLMs) on political opinions and decision-making.<n>We found that participants exposed to partisan biased models were significantly more likely to adopt opinions and make decisions which matched the LLM's bias.
arXiv Detail & Related papers (2024-10-08T22:56:00Z) - Assessing Political Bias in Large Language Models [0.624709220163167]
We evaluate the political bias of open-source Large Language Models (LLMs) concerning political issues within the European Union (EU) from a German voter's perspective.
We show that larger models, such as Llama3-70B, tend to align more closely with left-leaning political parties, while smaller models often remain neutral.
arXiv Detail & Related papers (2024-05-17T15:30:18Z) - Measuring Political Bias in Large Language Models: What Is Said and How It Is Said [46.1845409187583]
We propose to measure political bias in LLMs by analyzing both the content and style of their generated content regarding political issues.
Our proposed measure looks at different political issues such as reproductive rights and climate change, at both the content (the substance of the generation) and the style (the lexical polarity) of such bias.
arXiv Detail & Related papers (2024-03-27T18:22:48Z) - Whose Side Are You On? Investigating the Political Stance of Large Language Models [56.883423489203786]
We investigate the political orientation of Large Language Models (LLMs) across a spectrum of eight polarizing topics.
Our investigation delves into the political alignment of LLMs across a spectrum of eight polarizing topics, spanning from abortion to LGBTQ issues.
The findings suggest that users should be mindful when crafting queries, and exercise caution in selecting neutral prompt language.
arXiv Detail & Related papers (2024-03-15T04:02:24Z) - Political Compass or Spinning Arrow? Towards More Meaningful Evaluations for Values and Opinions in Large Language Models [61.45529177682614]
We challenge the prevailing constrained evaluation paradigm for values and opinions in large language models.
We show that models give substantively different answers when not forced.
We distill these findings into recommendations and open challenges in evaluating values and opinions in LLMs.
arXiv Detail & Related papers (2024-02-26T18:00:49Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
Large Language Models (LLMs) have sparked intense debate regarding the prevalence of bias in these models and its mitigation.
We propose a prompt-based method for the extraction of confounding and mediating attributes which contribute to the decision process.
We find that the observed disparate treatment can at least in part be attributed to confounding and mitigating attributes and model misalignment.
arXiv Detail & Related papers (2023-11-15T00:02:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.