Progress in the development of quantum algorithms and software
- URL: http://arxiv.org/abs/2505.04285v1
- Date: Wed, 07 May 2025 09:43:08 GMT
- Title: Progress in the development of quantum algorithms and software
- Authors: Anastasiia S. Nikolaeva, Daria O. Konina, Anatolii V. Antipov, Maksim A. Gavreev, Konstantin M. Makushin, Boris I. Bantysh, Andrey Yu. Chernyavskiy, Grigory V. Astretsov, Evgeniy A. Polyakov, Aidar I. Saifoulline, Evgeniy O. Kiktenko, Alexey N. Rubtsov, Aleksey K. Fedorov,
- Abstract summary: A set of software solutions for quantum computing devices was developed.<n>This software package includes a set of quantum algorithms for solving prototypes of applied tasks.<n>It is necessary to mention the execution of quantum algorithms using a cloud-based quantum computing platform.
- Score: 0.4444892237817064
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A quantum processor, like any computing device, requires the development of both hardware and the necessary set of software solutions, starting with quantum algorithms and ending with means of accessing quantum devices. As part of the roadmap for the development of the high-tech field of quantum computing in the period from 2020 to 2024, a set of software solutions for quantum computing devices was developed. This software package includes a set of quantum algorithms for solving prototypes of applied tasks, monitoring and benchmarking tools for quantum processors, error suppression and correction methods, tools for compiling and optimizing quantum circuits, as well as interfaces for remote cloud access. This review presents the key results achieved, among which it is necessary to mention the execution of quantum algorithms using a cloud-based quantum computing platform.
Related papers
- Benchmarking fault-tolerant quantum computing hardware via QLOPS [2.0464713282534848]
To run quantum algorithms, it is essential to develop scalable quantum hardware with low noise levels.<n>Various fault-tolerant quantum computing schemes have been developed for different hardware platforms.<n>We propose Quantum Logical Operations Per Second (QLOPS) as a metric for assessing the performance of FTQC schemes.
arXiv Detail & Related papers (2025-07-16T08:31:51Z) - Route-Forcing: Scalable Quantum Circuit Mapping for Scalable Quantum Computing Architectures [41.39072840772559]
Route-Forcing is a quantum circuit mapping algorithm that shows an average speedup of $3.7times$.
We present a quantum circuit mapping algorithm that shows an average speedup of $3.7times$ compared to the state-of-the-art scalable techniques.
arXiv Detail & Related papers (2024-07-24T14:21:41Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum algorithms: A survey of applications and end-to-end complexities [88.57261102552016]
The anticipated applications of quantum computers span across science and industry.<n>We present a survey of several potential application areas of quantum algorithms.<n>We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Near-Term Quantum Computing Techniques: Variational Quantum Algorithms,
Error Mitigation, Circuit Compilation, Benchmarking and Classical Simulation [5.381727213688375]
We are still a long way from reaching the maturity of a full-fledged quantum computer.
An outstanding challenge is to come up with an application that can reliably carry out a nontrivial task.
Several near-term quantum computing techniques have been proposed to characterize and mitigate errors.
arXiv Detail & Related papers (2022-11-16T07:53:15Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - The Future of Quantum Computing with Superconducting Qubits [2.6668731290542222]
We see a branching point in computing paradigms with the emergence of quantum processing units (QPUs)
Extracting the full potential of computation and realizing quantum algorithms with a super-polynomial speedup will most likely require major advances in quantum error correction technology.
Long term, we see hardware that exploits qubit connectivity in higher than 2D topologies to realize more efficient quantum error correcting codes.
arXiv Detail & Related papers (2022-09-14T18:00:03Z) - A perspective on the current state-of-the-art of quantum computing for
drug discovery applications [43.55994393060723]
Quantum computing promises to shift the computational capabilities in many areas of chemical research by bringing into reach currently impossible calculations.
We briefly summarize and compare the scaling properties of state-of-the-art quantum algorithms.
We provide novel estimates of the quantum computational cost of simulating progressively larger embedding regions of a pharmaceutically relevant covalent protein-drug complex.
arXiv Detail & Related papers (2022-06-01T15:05:04Z) - Full-stack quantum computing systems in the NISQ era: algorithm-driven
and hardware-aware compilation techniques [1.3496450124792878]
We will provide an overview on current full-stack quantum computing systems.
We will emphasize the need for tight co-design among adjacent layers as well as vertical cross-layer design.
arXiv Detail & Related papers (2022-04-13T13:26:56Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - A Roadmap for Automating the Selection of Quantum Computers for Quantum
Algorithms [0.39146761527401425]
Some quantum algorithms already exist that show a theoretical speedup compared to the best known classical algorithms.
The input data determines, e.g., the required number of qubits and gates of a quantum algorithm.
An algorithm implementation also depends on the used Software Development Kit which restricts the set of usable quantum computers.
arXiv Detail & Related papers (2020-03-30T12:44:10Z) - Software tools for quantum control: Improving quantum computer
performance through noise and error suppression [3.6508609114589317]
We introduce software tools for the application and integration of quantum control in quantum computing research.
We provide an overview of a set of python-based classical software tools for creating and deploying optimized quantum control solutions.
We describe a software architecture leveraging both high-performance distributed cloud computation and local custom integration into hardware systems.
arXiv Detail & Related papers (2020-01-13T04:34:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.