DATA: Multi-Disentanglement based Contrastive Learning for Open-World Semi-Supervised Deepfake Attribution
- URL: http://arxiv.org/abs/2505.04384v1
- Date: Wed, 07 May 2025 13:05:32 GMT
- Title: DATA: Multi-Disentanglement based Contrastive Learning for Open-World Semi-Supervised Deepfake Attribution
- Authors: Ming-Hui Liu, Xiao-Qian Liu, Xin Luo, Xin-Shun Xu,
- Abstract summary: Deepfake attribution aims to perform multiclassification on different facial manipulation techniques.<n>Previous methods focus only on method-specific clues, which easily lead to overfitting.<n>We propose an innovative multi-DisentAnglement based conTrastive leArning framework, DATA, to enhance the generalization ability.
- Score: 16.546512252601413
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deepfake attribution (DFA) aims to perform multiclassification on different facial manipulation techniques, thereby mitigating the detrimental effects of forgery content on the social order and personal reputations. However, previous methods focus only on method-specific clues, which easily lead to overfitting, while overlooking the crucial role of common forgery features. Additionally, they struggle to distinguish between uncertain novel classes in more practical open-world scenarios. To address these issues, in this paper we propose an innovative multi-DisentAnglement based conTrastive leArning framework, DATA, to enhance the generalization ability on novel classes for the open-world semi-supervised deepfake attribution (OSS-DFA) task. Specifically, since all generation techniques can be abstracted into a similar architecture, DATA defines the concept of 'Orthonormal Deepfake Basis' for the first time and utilizes it to disentangle method-specific features, thereby reducing the overfitting on forgery-irrelevant information. Furthermore, an augmented-memory mechanism is designed to assist in novel class discovery and contrastive learning, which aims to obtain clear class boundaries for the novel classes through instance-level disentanglements. Additionally, to enhance the standardization and discrimination of features, DATA uses bases contrastive loss and center contrastive loss as auxiliaries for the aforementioned modules. Extensive experimental evaluations show that DATA achieves state-of-the-art performance on the OSS-DFA benchmark, e.g., there are notable accuracy improvements in 2.55% / 5.7% under different settings, compared with the existing methods.
Related papers
- Generalized Semantic Contrastive Learning via Embedding Side Information for Few-Shot Object Detection [52.490375806093745]
The objective of few-shot object detection (FSOD) is to detect novel objects with few training samples.<n>We introduce the side information to alleviate the negative influences derived from the feature space and sample viewpoints.<n>Our model outperforms the previous state-of-the-art methods, significantly improving the ability of FSOD in most shots/splits.
arXiv Detail & Related papers (2025-04-09T17:24:05Z) - High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study [64.06777376676513]
We develop a few-shot segmentation (FSS) framework based on foundation models.
To be specific, we propose a simple approach to extract implicit knowledge from foundation models to construct coarse correspondence.
Experiments on two widely used datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-10T08:04:11Z) - Anti-Collapse Loss for Deep Metric Learning Based on Coding Rate Metric [99.19559537966538]
DML aims to learn a discriminative high-dimensional embedding space for downstream tasks like classification, clustering, and retrieval.
To maintain the structure of embedding space and avoid feature collapse, we propose a novel loss function called Anti-Collapse Loss.
Comprehensive experiments on benchmark datasets demonstrate that our proposed method outperforms existing state-of-the-art methods.
arXiv Detail & Related papers (2024-07-03T13:44:20Z) - SMILe: Leveraging Submodular Mutual Information For Robust Few-Shot Object Detection [2.0755366440393743]
Confusion and forgetting of object classes have been challenges of prime interest in Few-Shot Object Detection (FSOD)
We introduce a novel Submodular Mutual Information Learning framework which adopts mutual information functions.
Our proposed approach generalizes to several existing approaches in FSOD, agnostic of the backbone architecture.
arXiv Detail & Related papers (2024-07-02T20:53:43Z) - SEER-ZSL: Semantic Encoder-Enhanced Representations for Generalized Zero-Shot Learning [0.6792605600335813]
Zero-Shot Learning (ZSL) presents the challenge of identifying categories not seen during training.<n>We introduce a Semantic-Enhanced Representations for Zero-Shot Learning (SEER-ZSL)<n>First, we aim to distill meaningful semantic information using a probabilistic encoder, enhancing the semantic consistency and robustness.<n>Second, we distill the visual space by exploiting the learned data distribution through an adversarially trained generator. Third, we align the distilled information, enabling a mapping of unseen categories onto the true data manifold.
arXiv Detail & Related papers (2023-12-20T15:18:51Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Feature Diversity Learning with Sample Dropout for Unsupervised Domain
Adaptive Person Re-identification [0.0]
This paper proposes a new approach to learn the feature representation with better generalization ability through limiting noisy pseudo labels.
We put forward a brand-new method referred as to Feature Diversity Learning (FDL) under the classic mutual-teaching architecture.
Experimental results show that our proposed FDL-SD achieves the state-of-the-art performance on multiple benchmark datasets.
arXiv Detail & Related papers (2022-01-25T10:10:48Z) - Boosting the Generalization Capability in Cross-Domain Few-shot Learning
via Noise-enhanced Supervised Autoencoder [23.860842627883187]
We teach the model to capture broader variations of the feature distributions with a novel noise-enhanced supervised autoencoder (NSAE)
NSAE trains the model by jointly reconstructing inputs and predicting the labels of inputs as well as their reconstructed pairs.
We also take advantage of NSAE structure and propose a two-step fine-tuning procedure that achieves better adaption and improves classification performance in the target domain.
arXiv Detail & Related papers (2021-08-11T04:45:56Z) - SCARF: Self-Supervised Contrastive Learning using Random Feature
Corruption [72.35532598131176]
We propose SCARF, a technique for contrastive learning, where views are formed by corrupting a random subset of features.
We show that SCARF complements existing strategies and outperforms alternatives like autoencoders.
arXiv Detail & Related papers (2021-06-29T08:08:33Z) - Spatial Contrastive Learning for Few-Shot Classification [9.66840768820136]
We propose a novel attention-based spatial contrastive objective to learn locally discriminative and class-agnostic features.
With extensive experiments, we show that the proposed method outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2020-12-26T23:39:41Z) - Spectrum-Guided Adversarial Disparity Learning [52.293230153385124]
We propose a novel end-to-end knowledge directed adversarial learning framework.
It portrays the class-conditioned intraclass disparity using two competitive encoding distributions and learns the purified latent codes by denoising learned disparity.
The experiments on four HAR benchmark datasets demonstrate the robustness and generalization of our proposed methods over a set of state-of-the-art.
arXiv Detail & Related papers (2020-07-14T05:46:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.