論文の概要: A Heuristic-Integrated DRL Approach for Phase Optimization in Large-Scale RISs
- arxiv url: http://arxiv.org/abs/2505.04401v1
- Date: Wed, 07 May 2025 13:34:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-08 19:07:36.088233
- Title: A Heuristic-Integrated DRL Approach for Phase Optimization in Large-Scale RISs
- Title(参考訳): 大規模RISにおける位相最適化のためのヒューリスティック統合DRL手法
- Authors: Wei Wang, Peizheng Li, Angela Doufexi, Mark A. Beach,
- Abstract要約: 大規模な再構成可能な知的表面(RIS)における離散位相シフトの最適化は、非線形の性質のため困難である。
本稿では,深層ネットワークQGA(DDQ)における複数ステップの動作をRIS列制御に活用する,深層学習強化(DRL)フレームワークを提案する。
提案手法は、小さなDRLアクション空間内でのRIS最適化を効果的に処理し、大規模なRISを最適化する能力を示す。
- 参考スコア(独自算出の注目度): 4.209737625992893
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimizing discrete phase shifts in large-scale reconfigurable intelligent surfaces (RISs) is challenging due to their non-convex and non-linear nature. In this letter, we propose a heuristic-integrated deep reinforcement learning (DRL) framework that (1) leverages accumulated actions over multiple steps in the double deep Q-network (DDQN) for RIS column-wise control and (2) integrates a greedy algorithm (GA) into each DRL step to refine the state via fine-grained, element-wise optimization of RIS configurations. By learning from GA-included states, the proposed approach effectively addresses RIS optimization within a small DRL action space, demonstrating its capability to optimize phase-shift configurations of large-scale RISs.
- Abstract(参考訳): 大規模な再構成可能な知的表面(RIS)における離散位相シフトの最適化は、その非凸性や非線形性のために困難である。
本稿では,1) RISカラムワイズ制御のための二重深度Q-network (DDQN) における複数のステップで蓄積された動作を活用するヒューリスティック統合深度強化学習(DRL) フレームワークを提案し,(2) 各DRLステップにグレディアルゴリズム(GA)を統合し,RIS構成のきめ細かな要素ワイズ最適化により状態を洗練させる。
GAを含む状態から学習することで、提案手法は小さなDRLアクション空間内のRIS最適化に効果的に対応し、大規模なRISの位相シフト構成を最適化する能力を実証する。
関連論文リスト
- Reconfigurable Intelligent Surface Aided Vehicular Edge Computing: Joint Phase-shift Optimization and Multi-User Power Allocation [28.47670676456068]
本稿では、車載通信を支援するための代替通信経路を提供するRIS(Reconfigurable Intelligent Surfaces)について紹介する。
本稿では、RIS位相シフト係数を最適化するDeep Deterministic Policy Gradient(DDPG)アルゴリズムと、車両ユーザ(VU)の電力配分を最適化するMulti-Agent Deep Deterministic Policy Gradient(MADDPG)アルゴリズムを組み合わせたDRLフレームワークを提案する。
シミュレーションの結果,提案手法は従来の集中型DDPG, Twin Delayed Deep Deterministic Policy Gradient (TD3) およびいくつかの典型的なスキームよりも優れていた。
論文 参考訳(メタデータ) (2024-07-18T03:18:59Z) - Multiobjective Vehicle Routing Optimization with Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II [52.083337333478674]
本稿では、時間窓を用いた多目的車両ルーティング問題(MOVRPTW)に対処するために、ウェイト・アウェア・ディープ・強化学習(WADRL)手法を提案する。
WADRLの結果を最適化するために非支配的ソート遺伝的アルゴリズム-II (NSGA-II) 法を用いる。
論文 参考訳(メタデータ) (2024-07-18T02:46:06Z) - Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
非直交多重アクセス(Noma)により、複数のユーザが同じ周波数帯域を共有でき、同時に再構成可能なインテリジェントサーフェス(STAR-RIS)を送信および反射することができる。
STAR-RISを屋内に展開することは、干渉緩和、電力消費、リアルタイム設定における課題を提示する。
複数のアクセスポイント(AP)、STAR-RIS、NOMAを利用した新しいネットワークアーキテクチャが屋内通信のために提案されている。
論文 参考訳(メタデータ) (2024-06-19T07:17:04Z) - Spectral-Risk Safe Reinforcement Learning with Convergence Guarantees [13.470544618339506]
本稿では、スペクトルリスク尺度制約付きRLアルゴリズム、スペクトルリスク制約付きポリシー最適化(SRCPO)を提案する。
双レベル最適化構造では、外部問題はリスク測度から導出される双対変数を最適化することであり、内部問題は最適ポリシーを見つけることである。
提案手法は連続制御タスク上で評価され,制約を満たす他のRCRLアルゴリズムの中で最高の性能を示した。
論文 参考訳(メタデータ) (2024-05-29T02:17:25Z) - Efficiently Training Deep-Learning Parametric Policies using Lagrangian Duality [55.06411438416805]
制約付きマルコフ決定プロセス(CMDP)は、多くの高度な応用において重要である。
本稿では,パラメトリックアクターポリシーを効率的に訓練するための2段階深度決定規則(TS-DDR)を提案する。
現状の手法と比較して, 解の質を高め, 数桁の計算時間を削減できることが示されている。
論文 参考訳(メタデータ) (2024-05-23T18:19:47Z) - A DRL-based Reflection Enhancement Method for RIS-assisted
Multi-receiver Communications [4.598835930908191]
複数のシングルリフレクションプロファイルの重ね合わせにより、分散ユーザのためのマルチリフレクションが可能になる。
周期的な単反射プロファイルの組み合わせは振幅/位相反作用をもたらし、各反射ビームの性能に影響を及ぼす。
本稿では,重なり合うプロファイルの誤アライメントに起因する遠距離場性能劣化を,二重反射最適化のシナリオに焦点をあてる。
論文 参考訳(メタデータ) (2023-09-11T09:43:59Z) - When AUC meets DRO: Optimizing Partial AUC for Deep Learning with
Non-Convex Convergence Guarantee [51.527543027813344]
単方向および二方向部分AUC(pAUC)の系統的および効率的な勾配法を提案する。
一方通行と一方通行の pAUC に対して,2つのアルゴリズムを提案し,それぞれ2つの定式化を最適化するための収束性を証明した。
論文 参考訳(メタデータ) (2022-03-01T01:59:53Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent Reflecting Surface (IRS)は、マルチアンテナアクセスポイント(AP)から受信機へのダウンリンク情報伝達を支援する有望な技術である。
我々は、APのアクティブビームフォーミングとIRSのパッシブビームフォーミングを共同最適化することで、APの送信電力を最小化する。
過去の経験からビームフォーミング戦略に適応できる深層強化学習(DRL)手法を提案する。
論文 参考訳(メタデータ) (2020-05-25T01:42:55Z) - Reconfigurable Intelligent Surface Assisted Multiuser MISO Systems
Exploiting Deep Reinforcement Learning [21.770491711632832]
再構成可能なインテリジェントサーフェス(RIS)は、将来の6世代(6G)無線通信システムにおいて重要な技術の一つとして推測されている。
本稿では, 基地局におけるビームフォーミング行列とRISにおける位相シフト行列の接合設計について, 深部強化学習(DRL)の最近の進歩を活用して検討する。
提案アルゴリズムは環境から学習し、その振る舞いを徐々に改善するだけでなく、2つの最先端ベンチマークと比較して同等の性能が得られる。
論文 参考訳(メタデータ) (2020-02-24T04:28:44Z) - RIS Enhanced Massive Non-orthogonal Multiple Access Networks: Deployment
and Passive Beamforming Design [116.88396201197533]
再構成可能なインテリジェントサーフェス(RIS)の配置と受動ビームフォーミング設計のための新しいフレームワークを提案する。
エネルギー効率を最大化するために、共同配置、位相シフト設計、および電力配分の問題を定式化する。
リアルタイムデータセットを活用することで,ユーザの遠隔交通需要を予測するために,LSTM(Long Short-term memory)ベースのエコー状態ネットワーク(ESN)アルゴリズムを提案する。
RISの展開と設計の連立問題を解くために,D3QNに基づく位置取得と位相制御アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-28T14:37:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。