A Heuristic-Integrated DRL Approach for Phase Optimization in Large-Scale RISs
- URL: http://arxiv.org/abs/2505.04401v1
- Date: Wed, 07 May 2025 13:34:12 GMT
- Title: A Heuristic-Integrated DRL Approach for Phase Optimization in Large-Scale RISs
- Authors: Wei Wang, Peizheng Li, Angela Doufexi, Mark A. Beach,
- Abstract summary: optimizing discrete phase shifts in large-scale reconfigurable intelligent surfaces (RISs) is challenging due to their non-linear nature.<n>We propose a deep learning reinforcement (DRL) framework that leverages actions multiple steps in a deep network QGA (DDQ) for RIS column-wise control.<n>The proposed approach effectively addresses RIS optimization within a small DRL action space, demonstrating capability to optimize its large-scale RISs.
- Score: 4.209737625992893
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimizing discrete phase shifts in large-scale reconfigurable intelligent surfaces (RISs) is challenging due to their non-convex and non-linear nature. In this letter, we propose a heuristic-integrated deep reinforcement learning (DRL) framework that (1) leverages accumulated actions over multiple steps in the double deep Q-network (DDQN) for RIS column-wise control and (2) integrates a greedy algorithm (GA) into each DRL step to refine the state via fine-grained, element-wise optimization of RIS configurations. By learning from GA-included states, the proposed approach effectively addresses RIS optimization within a small DRL action space, demonstrating its capability to optimize phase-shift configurations of large-scale RISs.
Related papers
- Reconfigurable Intelligent Surface Aided Vehicular Edge Computing: Joint Phase-shift Optimization and Multi-User Power Allocation [28.47670676456068]
We introduce the use of Reconfigurable Intelligent Surfaces (RIS), which provide alternative communication pathways to assist vehicular communication.
We propose an innovative deep reinforcement learning (DRL) framework that combines the Deep Deterministic Policy Gradient (DDPG) algorithm for optimizing RIS phase-shift coefficients and the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm for optimizing the power allocation of vehicle user (VU)
Simulation results show that our proposed scheme outperforms the traditional centralized DDPG, Twin Delayed Deep Deterministic Policy Gradient (TD3) and some typical schemes.
arXiv Detail & Related papers (2024-07-18T03:18:59Z) - Multiobjective Vehicle Routing Optimization with Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II [52.083337333478674]
This paper proposes a weight-aware deep reinforcement learning (WADRL) approach designed to address the multiobjective vehicle routing problem with time windows (MOVRPTW)
The Non-dominated sorting genetic algorithm-II (NSGA-II) method is then employed to optimize the outcomes produced by the WADRL.
arXiv Detail & Related papers (2024-07-18T02:46:06Z) - Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
Non-orthogonal multiple access (NOMA) enables multiple users to share the same frequency band, and simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)
deploying STAR-RIS indoors presents challenges in interference mitigation, power consumption, and real-time configuration.
A novel network architecture utilizing multiple access points (APs), STAR-RISs, and NOMA is proposed for indoor communication.
arXiv Detail & Related papers (2024-06-19T07:17:04Z) - Spectral-Risk Safe Reinforcement Learning with Convergence Guarantees [13.470544618339506]
We propose a spectral risk measure-constrained RL algorithm, spectral-risk-constrained policy optimization (SRCPO)
In the bilevel optimization structure, the outer problem involves optimizing dual variables derived from the risk measures, while the inner problem involves finding an optimal policy.
The proposed method has been evaluated on continuous control tasks and showed the best performance among other RCRL algorithms satisfying the constraints.
arXiv Detail & Related papers (2024-05-29T02:17:25Z) - Efficiently Training Deep-Learning Parametric Policies using Lagrangian Duality [55.06411438416805]
Constrained Markov Decision Processes (CMDPs) are critical in many high-stakes applications.<n>This paper introduces a novel approach, Two-Stage Deep Decision Rules (TS- DDR) to efficiently train parametric actor policies.<n>It is shown to enhance solution quality and to reduce computation times by several orders of magnitude when compared to current state-of-the-art methods.
arXiv Detail & Related papers (2024-05-23T18:19:47Z) - A DRL-based Reflection Enhancement Method for RIS-assisted
Multi-receiver Communications [4.598835930908191]
Superposition of multiple single-reflection profiles enables multi-reflection for distributed users.
The combination of periodical single-reflection profiles leads to amplitude/phase counteractions, affecting the performance of each reflection beam.
This paper focuses on a dual-reflection optimization scenario and investigates the far-field performance deterioration caused by the misalignment of overlapped profiles.
arXiv Detail & Related papers (2023-09-11T09:43:59Z) - Active RIS-aided EH-NOMA Networks: A Deep Reinforcement Learning
Approach [66.53364438507208]
An active reconfigurable intelligent surface (RIS)-aided multi-user downlink communication system is investigated.
Non-orthogonal multiple access (NOMA) is employed to improve spectral efficiency, and the active RIS is powered by energy harvesting (EH)
An advanced LSTM based algorithm is developed to predict users' dynamic communication state.
A DDPG based algorithm is proposed to joint control the amplification matrix and phase shift matrix RIS.
arXiv Detail & Related papers (2023-04-11T13:16:28Z) - When AUC meets DRO: Optimizing Partial AUC for Deep Learning with
Non-Convex Convergence Guarantee [51.527543027813344]
We propose systematic and efficient gradient-based methods for both one-way and two-way partial AUC (pAUC)
For both one-way and two-way pAUC, we propose two algorithms and prove their convergence for optimizing their two formulations, respectively.
arXiv Detail & Related papers (2022-03-01T01:59:53Z) - Reinforcement Learning for Adaptive Mesh Refinement [63.7867809197671]
We propose a novel formulation of AMR as a Markov decision process and apply deep reinforcement learning to train refinement policies directly from simulation.
The model sizes of these policy architectures are independent of the mesh size and hence scale to arbitrarily large and complex simulations.
arXiv Detail & Related papers (2021-03-01T22:55:48Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver.
We minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's passive beamforming.
We propose a deep reinforcement learning (DRL) approach that can adapt the beamforming strategies from past experiences.
arXiv Detail & Related papers (2020-05-25T01:42:55Z) - Reconfigurable Intelligent Surface Assisted Multiuser MISO Systems
Exploiting Deep Reinforcement Learning [21.770491711632832]
The reconfigurable intelligent surface (RIS) has been speculated as one of the key enabling technologies for the future six generation (6G) wireless communication systems.
In this paper, we investigate the joint design of transmit beamforming matrix at the base station and the phase shift matrix at the RIS, by leveraging recent advances in deep reinforcement learning (DRL)
The proposed algorithm is not only able to learn from the environment and gradually improve its behavior, but also obtains the comparable performance compared with two state-of-the-art benchmarks.
arXiv Detail & Related papers (2020-02-24T04:28:44Z) - RIS Enhanced Massive Non-orthogonal Multiple Access Networks: Deployment
and Passive Beamforming Design [116.88396201197533]
A novel framework is proposed for the deployment and passive beamforming design of a reconfigurable intelligent surface (RIS)
The problem of joint deployment, phase shift design, as well as power allocation is formulated for maximizing the energy efficiency.
A novel long short-term memory (LSTM) based echo state network (ESN) algorithm is proposed to predict users' tele-traffic demand by leveraging a real dataset.
A decaying double deep Q-network (D3QN) based position-acquisition and phase-control algorithm is proposed to solve the joint problem of deployment and design of the RIS.
arXiv Detail & Related papers (2020-01-28T14:37:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.