Towards Initialization-Agnostic Clustering with Iterative Adaptive Resonance Theory
- URL: http://arxiv.org/abs/2505.04440v1
- Date: Wed, 07 May 2025 14:12:39 GMT
- Title: Towards Initialization-Agnostic Clustering with Iterative Adaptive Resonance Theory
- Authors: Xiaozheng Qu, Zhaochuan Li, Zhuang Qi, Xiang Li, Haibei Huang, Lei Meng, Xiangxu Meng,
- Abstract summary: Iterative Refinement Adaptive Resonance Theory (IR-ART) integrates three key phases into a unified iterative framework.<n> IR-ART improves tolerance to suboptimal vigilance parameter values while preserving the parameter simplicity of Fuzzy ART.<n>Case studies visually confirm the algorithm's self-optimization capability through iterative refinement.
- Score: 8.312275539092466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The clustering performance of Fuzzy Adaptive Resonance Theory (Fuzzy ART) is highly dependent on the preset vigilance parameter, where deviations in its value can lead to significant fluctuations in clustering results, severely limiting its practicality for non-expert users. Existing approaches generally enhance vigilance parameter robustness through adaptive mechanisms such as particle swarm optimization and fuzzy logic rules. However, they often introduce additional hyperparameters or complex frameworks that contradict the original simplicity of the algorithm. To address this, we propose Iterative Refinement Adaptive Resonance Theory (IR-ART), which integrates three key phases into a unified iterative framework: (1) Cluster Stability Detection: A dynamic stability detection module that identifies unstable clusters by analyzing the change of sample size (number of samples in the cluster) in iteration. (2) Unstable Cluster Deletion: An evolutionary pruning module that eliminates low-quality clusters. (3) Vigilance Region Expansion: A vigilance region expansion mechanism that adaptively adjusts similarity thresholds. Independent of the specific execution of clustering, these three phases sequentially focus on analyzing the implicit knowledge within the iterative process, adjusting weights and vigilance parameters, thereby laying a foundation for the next iteration. Experimental evaluation on 15 datasets demonstrates that IR-ART improves tolerance to suboptimal vigilance parameter values while preserving the parameter simplicity of Fuzzy ART. Case studies visually confirm the algorithm's self-optimization capability through iterative refinement, making it particularly suitable for non-expert users in resource-constrained scenarios.
Related papers
- Continual Adaptation: Environment-Conditional Parameter Generation for Object Detection in Dynamic Scenarios [54.58186816693791]
environments constantly change over time and space, posing significant challenges for object detectors trained based on a closed-set assumption.<n>We propose a new mechanism, converting the fine-tuning process to a specific- parameter generation.<n>In particular, we first design a dual-path LoRA-based domain-aware adapter that disentangles features into domain-invariant and domain-specific components.
arXiv Detail & Related papers (2025-06-30T17:14:12Z) - Stochastic Optimization with Optimal Importance Sampling [49.484190237840714]
We propose an iterative-based algorithm that jointly updates the decision and the IS distribution without requiring time-scale separation between the two.<n>Our method achieves the lowest possible variable variance and guarantees global convergence under convexity of the objective and mild assumptions on the IS distribution family.
arXiv Detail & Related papers (2025-04-04T16:10:18Z) - Deep Matrix Factorization with Adaptive Weights for Multi-View Clustering [0.6037276428689637]
We introduce a novel Deep Matrix Factorization with Adaptive Weights for Multi-View Clustering (DMFAW)<n>Our method simultaneously incorporates feature selection and generates local partitions, enhancing clustering results.<n>Experiments on benchmark datasets highlight that DMFAW outperforms state-of-the-art methods in terms of clustering performance.
arXiv Detail & Related papers (2024-12-03T09:08:27Z) - Anomaly Detection in Time Series of EDFA Pump Currents to Monitor Degeneration Processes using Fuzzy Clustering [0.0]
This article proposes a novel fuzzy clustering based anomaly detection method for pump current time series of EDFA systems.<n>The proposed change detection framework (CDF) strategically combines the advantages of entropy analysis (EA) and principle component analysis (PCA) with fuzzy clustering procedures.
arXiv Detail & Related papers (2024-08-12T14:23:42Z) - Adaptively Robust and Sparse K-means Clustering [5.535948428518607]
This paper proposes adaptively robust and sparse K-means clustering (ARSK) to address these practical limitations of the standard K-means algorithm.
For robustness, we introduce a redundant error component for each observation, and this additional parameter is penalized using a group sparse penalty.
To accommodate the impact of high-dimensional noisy variables, the objective function is modified by incorporating weights and implementing a penalty to control the sparsity of the weight vector.
arXiv Detail & Related papers (2024-07-09T15:20:41Z) - GCC: Generative Calibration Clustering [55.44944397168619]
We propose a novel Generative Clustering (GCC) method to incorporate feature learning and augmentation into clustering procedure.
First, we develop a discrimirative feature alignment mechanism to discover intrinsic relationship across real and generated samples.
Second, we design a self-supervised metric learning to generate more reliable cluster assignment.
arXiv Detail & Related papers (2024-04-14T01:51:11Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
We focus on extending spatial aggregation capability and propose a dynamic kernel-based transform coding.
The proposed adaptive aggregation generates kernel offsets to capture valid information in the content-conditioned range to help transform.
Experimental results demonstrate that our method achieves superior rate-distortion performance on three benchmarks compared to the state-of-the-art learning-based methods.
arXiv Detail & Related papers (2023-08-17T01:34:51Z) - Improve Noise Tolerance of Robust Loss via Noise-Awareness [60.34670515595074]
We propose a meta-learning method which is capable of adaptively learning a hyper parameter prediction function, called Noise-Aware-Robust-Loss-Adjuster (NARL-Adjuster for brevity)
Four SOTA robust loss functions are attempted to be integrated with our algorithm, and comprehensive experiments substantiate the general availability and effectiveness of the proposed method in both its noise tolerance and performance.
arXiv Detail & Related papers (2023-01-18T04:54:58Z) - A Simple and Scalable Tensor Completion Algorithm via Latent Invariant
Constraint for Recommendation System [6.125831939376033]
We study a novel method to efficiently and accurately learn parameters of a model for the unobservable personal preferences that underly user ratings.
By regularizing the tensor decomposition with a single latent invariant, we achieve three properties for a reliable recommender system.
arXiv Detail & Related papers (2022-06-27T15:03:18Z) - Adaptive Clustering-based Reduced-Order Modeling Framework: Fast and
accurate modeling of localized history-dependent phenomena [0.0]
This paper proposes a novel Adaptive Clustering-based Reduced-Order Modeling (ACROM) framework to significantly improve and extend the recent family of clustering-based reduced-order models (CROMs)
It enables the clustering-based domain decomposition to evolve dynamically throughout the problem solution, ensuring optimum refinement in regions where the relevant fields present steeper gradients.
It offers a new route to fast and accurate material modeling of history-dependent nonlinear problems involving highly localized plasticity and damage phenomena.
arXiv Detail & Related papers (2021-09-24T11:36:58Z) - Correlation Clustering Reconstruction in Semi-Adversarial Models [70.11015369368272]
Correlation Clustering is an important clustering problem with many applications.
We study the reconstruction version of this problem in which one is seeking to reconstruct a latent clustering corrupted by random noise and adversarial modifications.
arXiv Detail & Related papers (2021-08-10T14:46:17Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.