Adaptive Clustering-based Reduced-Order Modeling Framework: Fast and
accurate modeling of localized history-dependent phenomena
- URL: http://arxiv.org/abs/2109.11897v1
- Date: Fri, 24 Sep 2021 11:36:58 GMT
- Title: Adaptive Clustering-based Reduced-Order Modeling Framework: Fast and
accurate modeling of localized history-dependent phenomena
- Authors: Bernardo P. Ferreira, F.M. Andrade Pires, Miguel A. Bessa
- Abstract summary: This paper proposes a novel Adaptive Clustering-based Reduced-Order Modeling (ACROM) framework to significantly improve and extend the recent family of clustering-based reduced-order models (CROMs)
It enables the clustering-based domain decomposition to evolve dynamically throughout the problem solution, ensuring optimum refinement in regions where the relevant fields present steeper gradients.
It offers a new route to fast and accurate material modeling of history-dependent nonlinear problems involving highly localized plasticity and damage phenomena.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper proposes a novel Adaptive Clustering-based Reduced-Order Modeling
(ACROM) framework to significantly improve and extend the recent family of
clustering-based reduced-order models (CROMs). This adaptive framework enables
the clustering-based domain decomposition to evolve dynamically throughout the
problem solution, ensuring optimum refinement in regions where the relevant
fields present steeper gradients. It offers a new route to fast and accurate
material modeling of history-dependent nonlinear problems involving highly
localized plasticity and damage phenomena. The overall approach is composed of
three main building blocks: target clusters selection criterion, adaptive
cluster analysis, and computation of cluster interaction tensors. In addition,
an adaptive clustering solution rewinding procedure and a dynamic adaptivity
split factor strategy are suggested to further enhance the adaptive process.
The coined Adaptive Self-Consistent Clustering Analysis (ASCA) is shown to
perform better than its static counterpart when capturing the multi-scale
elasto-plastic behavior of a particle-matrix composite and predicting the
associated fracture and toughness. Given the encouraging results shown in this
paper, the ACROM framework sets the stage and opens new avenues to explore
adaptivity in the context of CROMs.
Related papers
- High-Fidelity Scientific Simulation Surrogates via Adaptive Implicit Neural Representations [35.71656738800783]
Implicit neural representations (INRs) offer a compact and continuous framework for modeling spatially structured data.<n>Recent approaches address this by introducing additional features along rigid geometric structures.<n>We propose a simple yet effective alternative: Feature-Adaptive INR (FA-INR)
arXiv Detail & Related papers (2025-06-07T16:45:17Z) - CART-based Synthetic Tabular Data Generation for Imbalanced Regression [1.342834401139078]
We propose adapting an existing CART-based synthetic data generation method, tailoring it for imbalanced regression.<n>The new method integrates relevance and density-based mechanisms to guide sampling in sparse regions of the target space.<n>Our experimental study focuses on the prediction of extreme target values across benchmark datasets.
arXiv Detail & Related papers (2025-06-03T12:42:20Z) - Leveraging Importance Sampling to Detach Alignment Modules from Large Language Models [50.19188692497892]
Traditional alignment methods often require retraining large pretrained models.<n>We propose a novel textitResidual Alignment Model (textitRAM) that formalizes the alignment process as a type of importance sampling.<n>We develop a resampling algorithm with iterative token-level decoding to address the common first-token latency issue in comparable methods.
arXiv Detail & Related papers (2025-05-26T08:53:02Z) - Towards Initialization-Agnostic Clustering with Iterative Adaptive Resonance Theory [8.312275539092466]
Iterative Refinement Adaptive Resonance Theory (IR-ART) integrates three key phases into a unified iterative framework.<n> IR-ART improves tolerance to suboptimal vigilance parameter values while preserving the parameter simplicity of Fuzzy ART.<n>Case studies visually confirm the algorithm's self-optimization capability through iterative refinement.
arXiv Detail & Related papers (2025-05-07T14:12:39Z) - Gradient Correction in Federated Learning with Adaptive Optimization [19.93709245766609]
We propose tt FAdamGC, the first algorithm to integrate client-drift compensation into adaptive optimization.<n>We show that tt FAdamGC consistently outperforms existing methods in total communication and cost across varying levels of data.
arXiv Detail & Related papers (2025-02-04T21:21:30Z) - Deep Matrix Factorization with Adaptive Weights for Multi-View Clustering [0.6037276428689637]
We introduce a novel Deep Matrix Factorization with Adaptive Weights for Multi-View Clustering (DMFAW)
Our method simultaneously incorporates feature selection and generates local partitions, enhancing clustering results.
Experiments on benchmark datasets highlight that DMFAW outperforms state-of-the-art methods in terms of clustering performance.
arXiv Detail & Related papers (2024-12-03T09:08:27Z) - A3S: A General Active Clustering Method with Pairwise Constraints [66.74627463101837]
A3S features strategic active clustering adjustment on the initial cluster result, which is obtained by an adaptive clustering algorithm.
In extensive experiments across diverse real-world datasets, A3S achieves desired results with significantly fewer human queries.
arXiv Detail & Related papers (2024-07-14T13:37:03Z) - Correspondence-Free Non-Rigid Point Set Registration Using Unsupervised Clustering Analysis [28.18800845199871]
We present a novel non-rigid point set registration method inspired by unsupervised clustering analysis.
Our method achieves high accuracy results across various scenarios and surpasses competitors by a significant margin.
arXiv Detail & Related papers (2024-06-27T01:16:44Z) - GCC: Generative Calibration Clustering [55.44944397168619]
We propose a novel Generative Clustering (GCC) method to incorporate feature learning and augmentation into clustering procedure.
First, we develop a discrimirative feature alignment mechanism to discover intrinsic relationship across real and generated samples.
Second, we design a self-supervised metric learning to generate more reliable cluster assignment.
arXiv Detail & Related papers (2024-04-14T01:51:11Z) - Unfolding ADMM for Enhanced Subspace Clustering of Hyperspectral Images [43.152314090830174]
We introduce an innovative clustering architecture for hyperspectral images (HSI) by unfolding an iterative solver based on the Alternating Direction Method of Multipliers (ADMM) for sparse subspace clustering.
Our approach captures well the structural characteristics of HSI data by employing the K nearest neighbors algorithm as part of a structure preservation module.
arXiv Detail & Related papers (2024-04-10T15:51:46Z) - Transferable Deep Clustering Model [14.073783373395196]
We propose a novel transferable deep clustering model that can automatically adapt the cluster centroids according to the distribution of data samples.
Our approach introduces a novel attention-based module that can adapt the centroids by measuring their relationship with samples.
Experimental results on both synthetic and real-world datasets demonstrate the effectiveness and efficiency of our proposed transfer learning framework.
arXiv Detail & Related papers (2023-10-07T23:35:17Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Slimmable Domain Adaptation [112.19652651687402]
We introduce a simple framework, Slimmable Domain Adaptation, to improve cross-domain generalization with a weight-sharing model bank.
Our framework surpasses other competing approaches by a very large margin on multiple benchmarks.
arXiv Detail & Related papers (2022-06-14T06:28:04Z) - Revisiting GANs by Best-Response Constraint: Perspective, Methodology,
and Application [49.66088514485446]
Best-Response Constraint (BRC) is a general learning framework to explicitly formulate the potential dependency of the generator on the discriminator.
We show that even with different motivations and formulations, a variety of existing GANs ALL can be uniformly improved by our flexible BRC methodology.
arXiv Detail & Related papers (2022-05-20T12:42:41Z) - Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
Modeling [68.69431580852535]
We introduce a novel GP regression to incorporate the subgroup feedback.
Our modified regression has provably lower variance -- and thus a more accurate posterior -- compared to previous approaches.
We execute our algorithm on two disparate social problems.
arXiv Detail & Related papers (2021-07-07T03:57:22Z) - Uncertainty Modelling in Risk-averse Supply Chain Systems Using
Multi-objective Pareto Optimization [0.0]
One of the arduous tasks in supply chain modelling is to build robust models against irregular variations.
We have introduced a novel methodology namely, Pareto Optimization to handle uncertainties and bound the entropy of such uncertainties by explicitly modelling them under some apriori assumptions.
arXiv Detail & Related papers (2020-04-24T21:04:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.