Comparative Analysis of Carbon Footprint in Manual vs. LLM-Assisted Code Development
- URL: http://arxiv.org/abs/2505.04521v1
- Date: Wed, 07 May 2025 15:52:06 GMT
- Title: Comparative Analysis of Carbon Footprint in Manual vs. LLM-Assisted Code Development
- Authors: Kuen Sum Cheung, Mayuri Kaul, Gunel Jahangirova, Mohammad Reza Mousavi, Eric Zie,
- Abstract summary: This research aims to compare the energy consumption of manual software development versus an LLM-assisted approach.<n>Our results show that the LLM-assisted code generation leads on average to 32.72 higher carbon footprint than the manual one.
- Score: 3.262230127283452
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLM) have significantly transformed various domains, including software development. These models assist programmers in generating code, potentially increasing productivity and efficiency. However, the environmental impact of utilising these AI models is substantial, given their high energy consumption during both training and inference stages. This research aims to compare the energy consumption of manual software development versus an LLM-assisted approach, using Codeforces as a simulation platform for software development. The goal is to quantify the environmental impact and propose strategies for minimising the carbon footprint of using LLM in software development. Our results show that the LLM-assisted code generation leads on average to 32.72 higher carbon footprint than the manual one. Moreover, there is a significant correlation between task complexity and the difference in the carbon footprint of the two approaches.
Related papers
- Diffusion-Modeled Reinforcement Learning for Carbon and Risk-Aware Microgrid Optimization [48.70916202664808]
DiffCarl is a diffusion-modeled carbon- and risk-aware reinforcement learning algorithm for intelligent operation of multi-microgrid systems.<n>It outperforms classic algorithms and state-of-the-art DRL solutions, with 2.3-30.1% lower operational cost.<n>It also achieves 28.7% lower carbon emissions than those of its carbon-unaware variant and reduces performance variability.
arXiv Detail & Related papers (2025-07-22T03:27:07Z) - Carbon Footprint Evaluation of Code Generation through LLM as a Service [5.782162597806532]
Green coding and claims that AI models can improve energy efficiency have grown in popularity.<n>We present an overview of green coding and metrics to measure AI model sustainability awareness.
arXiv Detail & Related papers (2025-03-30T15:27:04Z) - Can We Make Code Green? Understanding Trade-Offs in LLMs vs. Human Code Optimizations [45.243401722182554]
Large language models (LLMs) claim to assist developers in optimizing code for performance and energy efficiency.<n>This work focuses on software written in Matlab-widely used in both academia and industry for scientific and engineering applications.<n>We analyze energy-focused optimization on 400 scripts across 100 top GitHub repositories.
arXiv Detail & Related papers (2025-03-26T00:27:29Z) - AI-Powered, But Power-Hungry? Energy Efficiency of LLM-Generated Code [45.77395425799378]
This paper presents the first study analyzing the energy efficiency and performance of LLM-generated code for three programming languages Python, Java, and C++.<n>Our results show that the models are much more successful in generating Python and Java than C++ code.
arXiv Detail & Related papers (2025-02-04T15:32:34Z) - Prompt engineering and its implications on the energy consumption of Large Language Models [4.791072577881446]
Large language models (LLMs) in software engineering pose severe challenges regarding computational resources, data centers, and carbon emissions.<n>In this paper, we investigate how prompt engineering techniques (PETs) can impact the carbon emission of the Llama 3 model for the code generation task.
arXiv Detail & Related papers (2025-01-10T11:49:31Z) - Green My LLM: Studying the key factors affecting the energy consumption of code assistants [1.747820331822631]
This paper investigates the energy consumption of large language models-based code assistants such as GitHub Copilot.
Our findings reveal that the energy consumption and performance of code assistants are influenced by various factors, such as the number of concurrent developers.
arXiv Detail & Related papers (2024-11-07T16:00:29Z) - SOEN-101: Code Generation by Emulating Software Process Models Using Large Language Model Agents [50.82665351100067]
FlowGen is a code generation framework that emulates software process models based on multiple Large Language Model (LLM) agents.
We evaluate FlowGenScrum on four benchmarks: HumanEval, HumanEval-ET, MBPP, and MBPP-ET.
arXiv Detail & Related papers (2024-03-23T14:04:48Z) - LLM-Assisted Code Cleaning For Training Accurate Code Generators [53.087019724256606]
We investigate data quality for code and find that making the code more structured and readable leads to improved code generation performance of the system.
We build a novel data-cleaning pipeline that uses these principles to transform existing programs.
We evaluate our approach on two challenging algorithmic code generation benchmarks and find that fine-tuning CodeLLaMa-7B improves the performance by up to 30% compared to fine-tuning on the original dataset.
arXiv Detail & Related papers (2023-11-25T02:45:50Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
This study seeks to address the demands of high-performance machine learning models with environmental sustainability.
Traditional machine learning algorithms, such as Decision Trees and Random Forests, demonstrate robust efficiency and performance.
However, superior outcomes were obtained with optimised configurations, albeit with a commensurate increase in resource consumption.
arXiv Detail & Related papers (2023-07-01T15:18:00Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
We provide a framework for measuring software carbon intensity, and propose to measure operational carbon emissions.
We evaluate a suite of approaches for reducing emissions on the Microsoft Azure cloud compute platform.
arXiv Detail & Related papers (2022-06-10T17:04:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.