論文の概要: Quantum QSAR for drug discovery
- arxiv url: http://arxiv.org/abs/2505.04648v1
- Date: Tue, 06 May 2025 17:58:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 21:43:49.607749
- Title: Quantum QSAR for drug discovery
- Title(参考訳): 薬物発見のための量子QSAR
- Authors: Alejandro Giraldo, Daniel Ruiz, Mariano Caruso, Guido Bellomo,
- Abstract要約: 量的構造-活性関係(QSAR)モデリングは、薬物発見の鍵となる。
本研究では,量子支援ベクトルマシン(QSVM)によるQSAR技術の向上を提案する。
量子データ符号化と量子カーネル関数を用いて,より正確かつ効率的な予測モデルの構築を目指す。
- 参考スコア(独自算出の注目度): 41.94295877935867
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantitative Structure-Activity Relationship (QSAR) modeling is key in drug discovery, but classical methods face limitations when handling high-dimensional data and capturing complex molecular interactions. This research proposes enhancing QSAR techniques through Quantum Support Vector Machines (QSVMs), which leverage quantum computing principles to process information Hilbert spaces. By using quantum data encoding and quantum kernel functions, we aim to develop more accurate and efficient predictive models.
- Abstract(参考訳): 量的構造-活性関係(QSAR)モデリングは薬物発見において重要であるが、古典的な手法は高次元のデータ処理と複雑な分子相互作用のキャプチャーにおいて制限に直面している。
本研究では,量子コンピューティングの原理を利用して情報処理を行う量子支援ベクトルマシン(QSVM)によるQSAR技術の強化を提案する。
量子データ符号化と量子カーネル関数を用いて,より正確かつ効率的な予測モデルの構築を目指す。
関連論文リスト
- MolQAE: Quantum Autoencoder for Molecular Representation Learning [19.646000097585272]
本稿では、量子コンピューティングと分子表現学習を統合する新しいアプローチである量子分子オートエンコーダを紹介する。
本稿では、SMILES分子表現を量子状態空間にマッピングする量子回路ベースのオートエンコーダアーキテクチャを提案する。
実験の結果、量子オートエンコーダは分子構造や化学的性質を効果的に捉えていることが示された。
論文 参考訳(メタデータ) (2025-05-03T17:36:47Z) - Characterizing Non-Markovian Dynamics of Open Quantum Systems [0.0]
我々はTCLマスター方程式を用いて非マルコフ進化を特徴付ける構造保存手法を開発した。
本稿では,ローレンス・リバモア国立研究所のQuantum Device Integration Testbed (QuDIT) における超伝導量子ビットの実験データを用いた手法について述べる。
これらの知見は、短期量子プロセッサにおける量子制御とエラー軽減に寄与する、オープン量子システムの効率的なモデリング戦略に関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2025-03-28T04:43:24Z) - Quantum Machine Learning of Molecular Energies with Hybrid Quantum-Neural Wavefunction [1.545628748828856]
本稿では,効率的な量子回路とディープニューラルネットワークを組み合わせて分子波動関数を学習するハイブリッドフレームワークを提案する。
このアプローチは計算効率と精度を高め、従来の量子計算化学法を超越している。
論文 参考訳(メタデータ) (2025-01-08T04:18:51Z) - Robust Quantum Reservoir Computing for Molecular Property Prediction [0.5399129278613575]
本稿では,潜在的な薬物分子の生物活性を予測するために,量子貯水池計算(QRC)手法を提案する。
データセットのサイズが小さくなるにつれて、より堅牢なQRC性能が観察される。
さらに、一様多様体近似と射影法を利用して、古典的特徴が量子力学によって変換されるときの構造変化を分析する。
論文 参考訳(メタデータ) (2024-12-09T18:49:18Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
論文 参考訳(メタデータ) (2024-11-13T12:03:39Z) - CompressedMediQ: Hybrid Quantum Machine Learning Pipeline for High-Dimensional Neuroimaging Data [1.3359321655273804]
本稿では,新しいハイブリッド量子古典型機械学習パイプラインであるCompressedMediQを紹介する。
高次元のマルチクラス・ニューロイメージングデータ解析に関連する計算課題に対処する。
論文 参考訳(メタデータ) (2024-09-13T07:03:01Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
量子カーネル法(Quantum Kernel Methods, QKM)のデータ表現能力とSAMの効率的な情報抽出能力を組み合わせた量子カーネル自己認識機構(Quantum Kernel Self-Attention Mechanism, QKSAM)を導入する。
量子カーネル自己保持ネットワーク(QKSAN)フレームワークは,DMP(Dederred Measurement Principle)と条件測定技術を巧みに組み込んだQKSAMに基づいて提案されている。
4つのQKSANサブモデルはPennyLaneとIBM Qiskitプラットフォームにデプロイされ、MNISTとFashion MNISTのバイナリ分類を実行する。
論文 参考訳(メタデータ) (2023-08-25T15:08:19Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。