A review of applications of Quantum Energy Teleportation: from experimental tests to thermodynamics and spacetime engineering
- URL: http://arxiv.org/abs/2505.04689v3
- Date: Fri, 11 Jul 2025 19:49:09 GMT
- Title: A review of applications of Quantum Energy Teleportation: from experimental tests to thermodynamics and spacetime engineering
- Authors: Boris Ragula, Eduardo Martín-Martínez,
- Abstract summary: Quantum energy teleportation (QET) exploits the existence of correlations to enable remote energy transfer.<n>This paper presents a review of the thermodynamic foundations of QET and reviews its first experimental demonstration.<n>We will review how QET can be employed to optimally generate exotic quantum states characterized by negative average stress-energy densities.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum energy teleportation (QET) exploits the existence of correlations to enable remote energy transfer without the need for physical energy carriers between emitter and receiver. This paper presents a review of the thermodynamic foundations of QET and reviews its first experimental demonstration (performed using Nuclear Magnetic Resonance), along with its implementation on publicly available superconducting quantum hardware. Additionally, we review an application of QET in the field of quantum thermodynamics as an efficient algorithmic cooling technique to cool down individual parts of interacting systems. Finally, we will review how QET can be employed to optimally generate exotic quantum states characterized by negative average stress-energy densities, offering a new operational approach to engineering such states which are promising in the context of semiclassical gravity.
Related papers
- Roadmap on Quantum Thermodynamics [59.07133245559213]
This Roadmap provides an overview of the recent developments across many of the field's sub-disciplines.<n>It assesses the key challenges and future prospects, providing a guide for its near term progress.
arXiv Detail & Related papers (2025-04-28T18:00:06Z) - Dynamical Casimir effect in superconducting cavities: from photon generation to universal quantum gates [49.1574468325115]
Chapter explores various aspects of the Dynamical Casimir Effect (DCE) and its implications in the context of circuit quantum electrodynamics (cQED)
arXiv Detail & Related papers (2025-04-15T16:28:00Z) - Experimental realization of a quantum heat engine based on dissipation-engineered superconducting circuits [0.0]
We experimentally demonstrate a quantum heat engine based on superconducting circuits.<n>We implement a quantum Otto cycle by a tailored drive on the QCR to sequentially induce cooling and heating.<n>We measure positive output powers and efficiencies that agree with our simulations of the quantum evolution.
arXiv Detail & Related papers (2025-02-27T14:34:29Z) - Quantum Attention for Vision Transformers in High Energy Physics [39.38389619339798]
We present a novel hybrid quantum-classical vision transformer architecture incorporating quantum orthogonal neural networks (QONNs)
This work highlights the potential of quantum-enhanced models to address the computational demands of next-generation particle physics experiments.
arXiv Detail & Related papers (2024-11-20T18:11:17Z) - Quantum Thermodynamics in Spin Systems: A Review of Cycles and Applications [0.0]
Quantum thermodynamics is a powerful theoretical tool for assessing the suitability of quantum materials as platforms for novel technologies.
In this Review, we cover the mathematical formulation used to model the quantum thermodynamic behavior of small-scale systems.
We discuss theoretical results obtained after applying this approach to model Heisenberg-like spin systems.
arXiv Detail & Related papers (2024-11-19T12:51:32Z) - Aspects of Quantum Energy Teleportation [0.0]
We explore quantum energy teleportation (QET) protocols, focusing on their behavior at finite temperatures.<n>We analyze the role of entanglement as a resource for QET, particularly in thermal states.<n>We then introduce a method to extract ground-state energy through a protocol that employs only quantum measurements.
arXiv Detail & Related papers (2024-11-12T14:40:41Z) - Extracting and Storing Energy From a Quasi-Vacuum on a Quantum Computer [0.0]
We explore recent advancements in the understanding and manipulation of vacuum energy in quantum physics.
Traditional QET protocols extract energy from what we refer to as a quasi-vacuum'' state, but the extracted quantum energy is dissipated into classical devices.
We propose an enhanced QET protocol that incorporates an additional qubit, enabling the stored energy to be stored within a quantum register for future use.
arXiv Detail & Related papers (2024-09-06T01:48:33Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Experimental verification of fluctuation relations with a quantum
computer [68.8204255655161]
We use a quantum processor to experimentally validate a number of theoretical results in non-equilibrium quantum thermodynamics.
Our experiments constitute the experimental basis for the understanding of the non-equilibrium energetics of quantum computation.
arXiv Detail & Related papers (2021-06-08T14:16:12Z) - Quantum Thermodynamics and Quantum Coherence Engines [0.0]
Close relationship between information and energy motivates us to explore if similar quantum benefits can be found in energy technologies.
Investigation of performance limits for a broader class of information-energy machines is the subject of the rapidly emerging field of quantum thermodynamics.
arXiv Detail & Related papers (2020-09-09T16:09:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.