Quantum Thermodynamics and Quantum Coherence Engines
- URL: http://arxiv.org/abs/2009.04387v1
- Date: Wed, 9 Sep 2020 16:09:14 GMT
- Title: Quantum Thermodynamics and Quantum Coherence Engines
- Authors: Asl{\i} Tuncer and \"Ozg\"ur E. M\"ustecaplio\u{g}lu
- Abstract summary: Close relationship between information and energy motivates us to explore if similar quantum benefits can be found in energy technologies.
Investigation of performance limits for a broader class of information-energy machines is the subject of the rapidly emerging field of quantum thermodynamics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advantages of quantum effects in several technologies, such as computation
and communication, have already been well appreciated, and some devices, such
as quantum computers and communication links, exhibiting superiority to their
classical counterparts have been demonstrated. The close relationship between
information and energy motivates us to explore if similar quantum benefits can
be found in energy technologies. Investigation of performance limits for a
broader class of information-energy machines is the subject of the rapidly
emerging field of quantum thermodynamics. Extension of classical
thermodynamical laws to the quantum realm is far from trivial. This short
review presents some of the recent efforts in this fundamental direction and
focuses on quantum heat engines and their efficiency bounds when harnessing
energy from non-thermal resources, specifically those containing quantum
coherence and correlations.
Related papers
- Quantum caloric effects [0.0]
This study focuses on deriving general expressions for caloric potentials in quantum systems.
Our results recover the classical cases and also reveal that the isothermal entropy change can be related to genuine quantum correlations in the system.
arXiv Detail & Related papers (2024-06-14T20:39:13Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Exploring quantum thermodynamics with NMR [0.0]
Quantum thermodynamics seeks to extend non-equilibrium thermodynamics to small quantum systems where non-classical features are essential to its description.
This review article provides an overview of some concepts in quantum thermodynamics highlighting test-of-principles experiments using nuclear magnetic resonance techniques.
arXiv Detail & Related papers (2023-03-15T20:21:10Z) - Quantum Engineering for Energy Applications [1.8514606155611764]
We review the deployment of quantum engineering principles in the fields of solar energy, batteries, and nuclear energy.
We find that a shared knowledge base is forming, which de facto corresponds to a new domain that we refer to as 'quantum energy science'
arXiv Detail & Related papers (2023-03-02T23:48:11Z) - Quantum Engines and Refrigerators [0.0]
Engines are systems and devices that convert one form of energy into another, typically into a more useful form that can perform work.
In the quantum regime, however, the principles of energy conversion become ambiguous, since quantum phenomena come into play.
Our work provides a broad overview of this active field of quantum engines and refrigerators, reviewing the latest theoretical proposals and experimental realizations.
arXiv Detail & Related papers (2023-02-01T19:46:01Z) - Thermally-induced qubit coherence in quantum electromechanics [0.0]
Coherence is the ability of a quantum system to be in a superposition of quantum states.
We show that quantum coherence is created in a composite system solely from the interaction of the parts.
arXiv Detail & Related papers (2022-06-09T13:33:45Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Simulating Quantum Materials with Digital Quantum Computers [55.41644538483948]
Digital quantum computers (DQCs) can efficiently perform quantum simulations that are otherwise intractable on classical computers.
The aim of this review is to provide a summary of progress made towards achieving physical quantum advantage.
arXiv Detail & Related papers (2021-01-21T20:10:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.