Foam-Agent: Towards Automated Intelligent CFD Workflows
- URL: http://arxiv.org/abs/2505.04997v1
- Date: Thu, 08 May 2025 07:05:51 GMT
- Title: Foam-Agent: Towards Automated Intelligent CFD Workflows
- Authors: Ling Yue, Nithin Somasekharan, Yadi Cao, Shaowu Pan,
- Abstract summary: We present Foam-Agent, a multi-agent framework that automates complex OpenFOAM-based CFD simulation from natural language inputs.<n>Our innovation includes (1) a hierarchical multi-index retrieval system with specialized indices for different simulation aspects, (2) a dependency-aware file generation system that provides consistency management across configuration files, and (3) an iterative error correction mechanism that diagnoses and resolves simulation failures without human intervention.
- Score: 2.303486126296845
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Computational Fluid Dynamics (CFD) is an essential simulation tool in various engineering disciplines, but it often requires substantial domain expertise and manual configuration, creating barriers to entry. We present Foam-Agent, a multi-agent framework that automates complex OpenFOAM-based CFD simulation workflows from natural language inputs. Our innovation includes (1) a hierarchical multi-index retrieval system with specialized indices for different simulation aspects, (2) a dependency-aware file generation system that provides consistency management across configuration files, and (3) an iterative error correction mechanism that diagnoses and resolves simulation failures without human intervention. Through comprehensive evaluation on the dataset of 110 simulation tasks, Foam-Agent achieves an 83.6% success rate with Claude 3.5 Sonnet, significantly outperforming existing frameworks (55.5% for MetaOpenFOAM and 37.3% for OpenFOAM-GPT). Ablation studies demonstrate the critical contribution of each system component, with the specialized error correction mechanism providing a 36.4% performance improvement. Foam-Agent substantially lowers the CFD expertise threshold while maintaining modeling accuracy, demonstrating the potential of specialized multi-agent systems to democratize access to complex scientific simulation tools. The code is public at https://github.com/csml-rpi/Foam-Agent
Related papers
- Efficient Federated Learning with Heterogeneous Data and Adaptive Dropout [62.73150122809138]
Federated Learning (FL) is a promising distributed machine learning approach that enables collaborative training of a global model using multiple edge devices.<n>We propose the FedDHAD FL framework, which comes with two novel methods: Dynamic Heterogeneous model aggregation (FedDH) and Adaptive Dropout (FedAD)<n>The combination of these two methods makes FedDHAD significantly outperform state-of-the-art solutions in terms of accuracy (up to 6.7% higher), efficiency (up to 2.02 times faster), and cost (up to 15.0% smaller)
arXiv Detail & Related papers (2025-07-14T16:19:00Z) - MAAM: A Lightweight Multi-Agent Aggregation Module for Efficient Image Classification Based on the MindSpore Framework [4.307728769243765]
We propose a lightweight attention architecture integrated with the MindSpore framework.<n>The Multi-Agent Aggregation Module (MAAM) employs three parallel agent branches with independently parameterized operations to extract heterogeneous features.<n>Using MindSpore's dynamic computational graph and operator fusion, MAAM achieves 87.0% accuracy on the CIFAR-10 dataset.
arXiv Detail & Related papers (2025-04-18T09:19:07Z) - An Efficient and Mixed Heterogeneous Model for Image Restoration [71.85124734060665]
Current mainstream approaches are based on three architectural paradigms: CNNs, Transformers, and Mambas.<n>We propose RestorMixer, an efficient and general-purpose IR model based on mixed-architecture fusion.
arXiv Detail & Related papers (2025-04-15T08:19:12Z) - Fine-tuning a Large Language Model for Automating Computational Fluid Dynamics Simulations [11.902947290205645]
Large language models (LLMs) have advanced scientific computing, their use in CFD is automating.<n>We introduce a novel approach centered on domain-specific LLM adaptation.<n>A multi-agent framework orchestrates the process, autonomously verifying inputs, generating configurations, running simulations, and correcting errors.
arXiv Detail & Related papers (2025-04-13T14:35:30Z) - An Efficient Hierarchical Preconditioner-Learner Architecture for Reconstructing Multi-scale Basis Functions of High-dimensional Subsurface Fluid Flow [4.303037819686676]
We present an efficient hierarchical preconditioner-learner architecture that reconstructs multi-scale basis functions of high-dimensional subsurface fluid flow.
FP-HMsNet achieved an MSE of 0.0036, an MAE of 0.0375, and an R2 of 0.9716 on the testing set, significantly outperforming existing models.
This model offers a novel method for efficient and accurate subsurface fluid flow modeling, with promising potential for more complex real-world applications.
arXiv Detail & Related papers (2024-11-01T09:17:08Z) - MetaOpenFOAM: an LLM-based multi-agent framework for CFD [11.508919041921942]
MetaOpenFOAM is a novel multi-agent collaborations framework.
It aims to complete CFD simulation tasks with only natural language as input.
It harnesses the power of MetaGPT's assembly line paradigm.
arXiv Detail & Related papers (2024-07-31T04:01:08Z) - Integrating Multi-Physics Simulations and Machine Learning to Define the Spatter Mechanism and Process Window in Laser Powder Bed Fusion [6.024307115154315]
In this work, we investigate mechanism of spatter formation, using a high-fidelity modelling tool that was built to simulate the multi-physics phenomena in LPBF.<n>To understand spatter behavior and formation, we reveal its properties at ejection and evaluate its variation from the meltpool, the source where it is formed.<n>The relationship between the spatter and the meltpool were evaluated via correlation analysis and machine learning (ML) algorithms for classification tasks.
arXiv Detail & Related papers (2024-05-13T15:08:02Z) - DS-Agent: Automated Data Science by Empowering Large Language Models with Case-Based Reasoning [56.887047551101574]
We present DS-Agent, a novel framework that harnesses large language models (LLMs) agent and case-based reasoning (CBR)
In the development stage, DS-Agent follows the CBR framework to structure an automatic iteration pipeline, which can flexibly capitalize on the expert knowledge from Kaggle.
In the deployment stage, DS-Agent implements a low-resource deployment stage with a simplified CBR paradigm, significantly reducing the demand on foundational capabilities of LLMs.
arXiv Detail & Related papers (2024-02-27T12:26:07Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.