論文の概要: A short review on qudit quantum machine learning
- arxiv url: http://arxiv.org/abs/2505.05158v1
- Date: Thu, 08 May 2025 11:54:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 21:43:49.865158
- Title: A short review on qudit quantum machine learning
- Title(参考訳): qudit量子機械学習に関する短いレビュー
- Authors: Tiago de Souza Farias, Lucas Friedrich, Jonas Maziero,
- Abstract要約: マルチレベル量子システム(qudits)は、バイナリ量子ビットパラダイムに代わる有望な代替手段を提供する。
本稿では,主に変分量子アルゴリズムや量子ニューラルネットワークなど,量子機械学習技術における量子ビットの役割について概説する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As quantum devices scale toward practical machine learning applications, the binary qubit paradigm faces expressivity and resource efficiency limitations. Multi-level quantum systems, or qudits, offer a promising alternative by harnessing a larger Hilbert space, enabling richer data embeddings, more compact variational circuits, and support for multi-valued problem structures. In this work, we review the role of qudits in quantum machine learning techniques, mainly variational quantum algorithms and quantum neural networks. Drawing on recent experimental demonstrations, including high-level superconducting transmons, qutrit-based combinatorial optimization, and single-qudit classifiers, we highlight how qudit architectures can reduce circuit depth and parameter counts while maintaining competitive fidelity. We further assess the evolving software ecosystem, from specialized simulators and differentiable-programming libraries to extensions of mainstream frameworks. We also identify key challenges in control complexity, noise management, and tooling maturity.
- Abstract(参考訳): 量子デバイスが実用的な機械学習アプリケーションに向けてスケールするにつれて、バイナリ量子ビットパラダイムは表現性とリソース効率の制限に直面している。
マルチレベル量子システム(qudits)は、より大きなヒルベルト空間を利用することで、よりリッチなデータ埋め込み、よりコンパクトな変動回路、多値問題構造のサポートを可能にする、有望な代替手段を提供する。
本稿では,主に変分量子アルゴリズムや量子ニューラルネットワークなど,量子機械学習技術における量子ビットの役割について概説する。
近年, 高温超伝導トランスモン, クォートベース組合せ最適化, 単一量子分類器などの実験実験により, コントラストフィディティを維持しつつ, 回路深さとパラメータ数を減少させる方法を強調した。
さらに、特殊なシミュレーターや差別化可能なプログラミングライブラリから、主流フレームワークの拡張まで、進化するソフトウェアエコシステムを評価します。
また、コントロールの複雑さ、ノイズ管理、ツーリングの成熟度といった重要な課題も特定しています。
関連論文リスト
- An Efficient Quantum Classifier Based on Hamiltonian Representations [50.467930253994155]
量子機械学習(QML)は、量子コンピューティングの利点をデータ駆動タスクに移行しようとする分野である。
入力をパウリ弦の有限集合にマッピングすることで、データ符号化に伴うコストを回避できる効率的な手法を提案する。
我々は、古典的および量子モデルに対して、テキストおよび画像分類タスクに対する我々のアプローチを評価する。
論文 参考訳(メタデータ) (2025-04-13T11:49:53Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
我々は中性原子アナログ量子コンピュータの量子力学を利用してデータを処理する量子貯水池学習アルゴリズムを開発した。
アルゴリズムを実験的に実装し、機械学習タスクの様々なカテゴリで競合性能を達成する。
本研究は,従来の量子相関を有効機械学習に活用する可能性を示すものである。
論文 参考訳(メタデータ) (2024-07-02T18:00:00Z) - Neural auto-designer for enhanced quantum kernels [59.616404192966016]
本稿では,問題固有の量子特徴写像の設計を自動化するデータ駆動型手法を提案する。
私たちの研究は、量子機械学習の進歩におけるディープラーニングの実質的な役割を強調します。
論文 参考訳(メタデータ) (2024-01-20T03:11:59Z) - Resource Saving via Ensemble Techniques for Quantum Neural Networks [1.4606049539095878]
本稿では,複数の量子ニューラルネットワークのインスタンスに基づいて,単一の機械学習モデルを構築することを含むアンサンブル手法を提案する。
特に,データロード構成の異なるバッグングとAdaBoostの手法を実装し,その性能を実世界の分類と回帰の両方で評価する。
これらの手法により,比較的小さな量子デバイス上でも,大規模で強力なモデルの構築が可能であることが示唆された。
論文 参考訳(メタデータ) (2023-03-20T17:19:45Z) - Learning Quantum Systems [0.0]
量子技術は、セキュアな通信、高性能コンピューティング、超精密センシングにおける画期的な応用によって、私たちの社会に革命をもたらすと約束している。
量子技術のスケールアップにおける主な特徴の1つは、量子システムの複雑さがその大きさと指数関数的にスケールすることである。
これは、量子状態の効率的なキャリブレーション、ベンチマーク、検証とその動的制御において深刻な問題を引き起こす。
論文 参考訳(メタデータ) (2022-07-01T09:47:26Z) - Modern applications of machine learning in quantum sciences [51.09906911582811]
本稿では、教師なし、教師なし、強化学習アルゴリズムにおけるディープラーニングとカーネル手法の使用について述べる。
我々は、微分可能プログラミング、生成モデル、機械学習に対する統計的アプローチ、量子機械学習など、より専門的なトピックについて議論する。
論文 参考訳(メタデータ) (2022-04-08T17:48:59Z) - Realizing a quantum generative adversarial network using a programmable
superconducting processor [17.3986929818418]
本稿では,プログラム可能な超伝導プロセッサを用いた量子生成逆数ネットワーク(QGAN)の実験的実装について報告する。
我々の実装は、ノイズの多い中間スケールの量子デバイスにスケールすることを約束しています。
論文 参考訳(メタデータ) (2020-09-27T12:09:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。