Probabilistic Embeddings for Frozen Vision-Language Models: Uncertainty Quantification with Gaussian Process Latent Variable Models
- URL: http://arxiv.org/abs/2505.05163v2
- Date: Fri, 04 Jul 2025 18:13:55 GMT
- Title: Probabilistic Embeddings for Frozen Vision-Language Models: Uncertainty Quantification with Gaussian Process Latent Variable Models
- Authors: Aishwarya Venkataramanan, Paul Bodesheim, Joachim Denzler,
- Abstract summary: Vision-Language Models (VLMs) learn joint representations by mapping images and text into a shared latent space.<n>GroVE builds on the Gaussian Process Latent Variable Model (GPLVM) to learn a shared low-dimensional latent space where image and text inputs are mapped to a unified representation.<n>GroVE achieves state-of-the-art uncertainty calibration across multiple downstream tasks, including cross-modal retrieval, visual question answering, and active learning.
- Score: 9.47743870776814
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision-Language Models (VLMs) learn joint representations by mapping images and text into a shared latent space. However, recent research highlights that deterministic embeddings from standard VLMs often struggle to capture the uncertainties arising from the ambiguities in visual and textual descriptions and the multiple possible correspondences between images and texts. Existing approaches tackle this by learning probabilistic embeddings during VLM training, which demands large datasets and does not leverage the powerful representations already learned by large-scale VLMs like CLIP. In this paper, we propose GroVE, a post-hoc approach to obtaining probabilistic embeddings from frozen VLMs. GroVE builds on Gaussian Process Latent Variable Model (GPLVM) to learn a shared low-dimensional latent space where image and text inputs are mapped to a unified representation, optimized through single-modal embedding reconstruction and cross-modal alignment objectives. Once trained, the Gaussian Process model generates uncertainty-aware probabilistic embeddings. Evaluation shows that GroVE achieves state-of-the-art uncertainty calibration across multiple downstream tasks, including cross-modal retrieval, visual question answering, and active learning.
Related papers
- Enhanced Continual Learning of Vision-Language Models with Model Fusion [16.764069327701186]
Vision-Language Models (VLMs) represent a breakthrough in artificial intelligence.<n>VLMs are susceptible to catastrophic forgetting when sequentially fine-tuned on multiple downstream tasks.<n>We propose Continual Decoupling-Unifying (ConDU), a novel approach, by introducing model fusion into continual learning.
arXiv Detail & Related papers (2025-03-12T15:48:13Z) - HoVLE: Unleashing the Power of Monolithic Vision-Language Models with Holistic Vision-Language Embedding [91.0552157725366]
This paper presents a novel high-performance monolithic VLM named HoVLE.<n>It converts visual and textual inputs into a shared space, allowing LLMs to process images in the same way as texts.<n>Our experiments show that HoVLE achieves performance close to leading compositional models on various benchmarks.
arXiv Detail & Related papers (2024-12-20T18:59:59Z) - VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks [60.5257456681402]
We study the potential for building universal embeddings capable of handling a wide range of downstream tasks.<n>We build a series of VLM2Vec models on SoTA VLMs like Phi-3.5-V, LLaVA-1.6 and evaluate them on MMEB's evaluation split.<n>Our results show that VLM2Vec achieves an absolute average improvement of 10% to 20% over existing multimodal embedding models.
arXiv Detail & Related papers (2024-10-07T16:14:05Z) - What Do VLMs NOTICE? A Mechanistic Interpretability Pipeline for Gaussian-Noise-free Text-Image Corruption and Evaluation [16.033361754660316]
Notice is the first Noise-free Text-Image Corruption and Evaluation pipeline for interpretability in Vision-Language Models (VLMs)<n>Our experiments on the SVO-Probes, MIT-States, and Facial Expression Recognition datasets reveal crucial insights into VLM decision-making.<n>This work paves the way for more transparent and interpretable multimodal systems.
arXiv Detail & Related papers (2024-06-24T05:13:19Z) - Multi-modal Auto-regressive Modeling via Visual Words [96.25078866446053]
We propose the concept of visual tokens, which maps the visual features to probability distributions over Large Multi-modal Models' vocabulary.
We further explore the distribution of visual features in the semantic space within LMM and the possibility of using text embeddings to represent visual information.
arXiv Detail & Related papers (2024-03-12T14:58:52Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - ProbVLM: Probabilistic Adapter for Frozen Vision-Language Models [69.50316788263433]
We propose ProbVLM, a probabilistic adapter that estimates probability distributions for the embeddings of pre-trained vision-language models.
We quantify the calibration of embedding uncertainties in retrieval tasks and show that ProbVLM outperforms other methods.
We present a novel technique for visualizing the embedding distributions using a large-scale pre-trained latent diffusion model.
arXiv Detail & Related papers (2023-07-01T18:16:06Z) - MAP: Multimodal Uncertainty-Aware Vision-Language Pre-training Model [35.52349231889843]
We project the representations of all modalities as probabilistic distributions via a Probability Distribution (PDE)
Compared to the existing deterministic methods, such uncertainty modeling can convey richer multimodal semantic information.
We propose suitable pre-training tasks: Distribution-based Vision-Language Contrastive learning (D-VLC), Distribution-based Masked Language Modeling (D-MLM), and Distribution-based Image-Text Matching (D-ITM)
arXiv Detail & Related papers (2022-10-11T10:54:54Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
Several multimodal representation learning approaches have been proposed that jointly represent image and text.
These approaches achieve superior performance by capturing high-level semantic information from large-scale multimodal pretraining.
We propose unbiased Dense Contrastive Visual-Linguistic Pretraining to replace the region regression and classification with cross-modality region contrastive learning.
arXiv Detail & Related papers (2021-09-24T07:20:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.