論文の概要: MARK: Memory Augmented Refinement of Knowledge
- arxiv url: http://arxiv.org/abs/2505.05177v1
- Date: Thu, 08 May 2025 12:28:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 21:43:49.873154
- Title: MARK: Memory Augmented Refinement of Knowledge
- Title(参考訳): MARK: 知識の記憶強化
- Authors: Anish Ganguli, Prabal Deb, Debleena Banerjee,
- Abstract要約: 大規模言語モデル(LLM)は、専門的なタスクを支援するが、コストのかかる微調整なしに、ドメイン知識の進化と整合するのに苦労する。
我々の Memory-Augmented Refinement of Knowledge (MARK) フレームワークにより、LLM は再トレーニングなしに継続的に学習できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) assist in specialized tasks but struggle to align with evolving domain knowledge without costly fine-tuning. Domain knowledge consists of: Knowledge: Immutable facts (e.g., 'A stone is solid') and generally accepted principles (e.g., ethical standards); Refined Memory: Evolving insights shaped by business needs and real-world changes. However, a significant gap often exists between a domain expert's deep, nuanced understanding and the system's domain knowledge, which can hinder accurate information retrieval and application. Our Memory-Augmented Refinement of Knowledge (MARK) framework enables LLMs to continuously learn without retraining by leveraging structured refined memory, inspired by the Society of Mind. MARK operates through specialized agents, each serving a distinct role: Residual Refined Memory Agent: Stores and retrieves domain-specific insights to maintain context over time; User Question Refined Memory Agent: Captures user-provided facts, abbreviations, and terminology for better comprehension; LLM Response Refined Memory Agent: Extracts key elements from responses for refinement and personalization. These agents analyse stored refined memory, detect patterns, resolve contradictions, and improve response accuracy. Temporal factors like recency and frequency prioritize relevant information while discarding outdated insights. MARK enhances LLMs in multiple ways: Ground Truth Strategy: Reduces hallucinations by establishing a structured reference; Domain-Specific Adaptation: Essential for fields like healthcare, law, and manufacturing, where proprietary insights are absent from public datasets; Personalized AI Assistants: Improves virtual assistants by remembering user preferences, ensuring coherent responses over time.
- Abstract(参考訳): 大規模言語モデル(LLM)は、専門的なタスクを支援するが、コストのかかる微調整なしに、ドメイン知識の進化と整合するのに苦労する。
知識: イミュータブルな事実(例:「石は固い」)と一般的に受け入れられている原則(例:倫理的基準)。
しかし、ドメインエキスパートの深い、ニュアンスのある理解とシステムのドメイン知識の間には、しばしば大きなギャップが存在し、正確な情報検索と適用を妨げる。
我々のMARK(Memory-Augmented Refinement of Knowledge)フレームワークは、精神科学にインスパイアされた構造化された記憶を活用することで、LLMが再学習することなく継続的な学習を可能にする。
Residual Refined Memory Agent: 時間とともにコンテキストを維持するためにドメイン固有の洞察を保存および取得する User Question Refined Memory Agent: ユーザが提供する事実、略語、用語をキャプチャして理解を深める LLM Response Refined Memory Agent: 改善とパーソナライゼーションのための応答から重要な要素を抽出する。
これらのエージェントは記憶された記憶を分析し、パターンを検出し、矛盾を解消し、応答精度を向上させる。
遅延や頻度のような一時的な要因は、古い洞察を捨てながら関連情報を優先する。
グランドトゥルース戦略: 構造化された参照を確立することで幻覚を減らす ドメイン特化適応: 医療、法律、製造などの分野において、パブリックデータセットから独自の洞察が欠如している分野に不可欠なこと パーソナライズされたAIアシスタント: ユーザの好みを記憶し、一貫性のある応答を確保することで仮想アシスタントを改善する。
関連論文リスト
- In Prospect and Retrospect: Reflective Memory Management for Long-term Personalized Dialogue Agents [70.12342024019044]
大規模言語モデル(LLM)は、オープンエンド対話において大きな進歩を遂げているが、関連する情報の保持と取得ができないため、その有効性は制限されている。
本稿では,長期対話エージェントのための新しいメカニズムであるリフレクティブメモリ管理(RMM)を提案する。
RMMは、LongMemEvalデータセットのメモリ管理なしでベースラインよりも10%以上精度が向上している。
論文 参考訳(メタデータ) (2025-03-11T04:15:52Z) - Systematic Knowledge Injection into Large Language Models via Diverse Augmentation for Domain-Specific RAG [24.660769275714685]
Retrieval-Augmented Generation (RAG) は、Large Language Models (LLM) にドメイン知識を組み込む重要な手法として登場した。
本稿では,学習データを2つの方法で強化することで,微調整プロセスを大幅に強化する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-12T12:39:51Z) - Resolving Editing-Unlearning Conflicts: A Knowledge Codebook Framework for Large Language Model Updating [61.70705744491162]
大きな言語モデル(LLM)は、人間の知識を符号化することで自然言語処理に優れる。
LLMの更新には、不要な知識を取り除くための学習と、新しい情報を統合するための編集という、2つの重要なタスクが同時に行われる。
知識コードブックに基づく LLM 更新のためのコンフリクトフリーフレームワーク Loka を提案する。
論文 参考訳(メタデータ) (2025-01-31T20:48:46Z) - Domain-Specific Retrieval-Augmented Generation Using Vector Stores, Knowledge Graphs, and Tensor Factorization [7.522493227357079]
大規模言語モデル(LLM)は大規模コーパスで事前訓練されている。
LLMは幻覚、知識の遮断、知識の帰属の欠如に悩まされる。
SMART-SLICはドメイン固有のLLMフレームワークである。
論文 参考訳(メタデータ) (2024-10-03T17:40:55Z) - MemLLM: Finetuning LLMs to Use An Explicit Read-Write Memory [49.96019697955383]
本稿では,構造化および明示的な読み書きメモリモジュールを統合することで,大規模言語モデル(LLM)の拡張手法であるMemLLMを紹介する。
実験の結果, 言語モデリング, 特に知識集約型タスクにおいて, MemLLMはLLMの性能と解釈可能性を向上させることが示唆された。
論文 参考訳(メタデータ) (2024-04-17T18:13:16Z) - Memory Sharing for Large Language Model based Agents [43.53494041932615]
本稿では,リアルタイムメモリフィルタ,ストレージ,検索を統合し,In-Context学習プロセスを強化するためのフレームワークであるMemory Sharingを紹介する。
実験の結果,MSフレームワークはオープンな質問に対処する際のエージェントの性能を大幅に改善することが示された。
論文 参考訳(メタデータ) (2024-04-15T17:57:30Z) - Knowledge Plugins: Enhancing Large Language Models for Domain-Specific
Recommendations [50.81844184210381]
本稿では,大規模言語モデルをDOmain固有のKnowledgEで拡張し,実践的アプリケーション,すなわちDOKEの性能を向上させるためのパラダイムを提案する。
このパラダイムはドメイン知識抽出器に依存し,1)タスクに効果的な知識を準備すること,2)特定のサンプルごとに知識を選択すること,3)LLMで理解可能な方法で知識を表現すること,の3つのステップで動作する。
論文 参考訳(メタデータ) (2023-11-16T07:09:38Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
我々は、自己回帰検索拡張生成(Self-RAG)と呼ばれる新しいフレームワークを導入する。
自己RAGは、検索と自己回帰によってLMの品質と事実性を高める。
様々なタスクセットにおいて、最先端のLCMや検索強化モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-10-17T18:18:32Z) - RET-LLM: Towards a General Read-Write Memory for Large Language Models [53.288356721954514]
RET-LLMは、大規模な言語モデルに一般的な読み書きメモリユニットを装備する新しいフレームワークである。
デビッドソンのセマンティクス理論に触発され、三重項の形で知識を抽出し保存する。
本フレームワークは,時間に基づく質問応答タスクの処理において,堅牢な性能を示す。
論文 参考訳(メタデータ) (2023-05-23T17:53:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。