Incentive-Aware Machine Learning; Robustness, Fairness, Improvement & Causality
- URL: http://arxiv.org/abs/2505.05211v1
- Date: Thu, 08 May 2025 13:04:32 GMT
- Title: Incentive-Aware Machine Learning; Robustness, Fairness, Improvement & Causality
- Authors: Chara Podimata,
- Abstract summary: The article explores the emerging domain of incentive-aware machine learning (ML), which focuses on algorithmic decision-making in contexts where individuals can strategically modify their inputs to influence outcomes.<n>It categorizes the research into three perspectives: robustness, aiming to design models resilient to "gaming"; fairness, analyzing the societal impacts of such systems; and improvement/causality, recognizing situations where strategic actions lead to genuine personal or societal improvement.
- Score: 5.112679200269859
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The article explores the emerging domain of incentive-aware machine learning (ML), which focuses on algorithmic decision-making in contexts where individuals can strategically modify their inputs to influence outcomes. It categorizes the research into three perspectives: robustness, aiming to design models resilient to "gaming"; fairness, analyzing the societal impacts of such systems; and improvement/causality, recognizing situations where strategic actions lead to genuine personal or societal improvement. The paper introduces a unified framework encapsulating models for these perspectives, including offline, online, and causal settings, and highlights key challenges such as differentiating between gaming and improvement and addressing heterogeneity among agents. By synthesizing findings from diverse works, we outline theoretical advancements and practical solutions for robust, fair, and causally-informed incentive-aware ML systems.
Related papers
- Advances in LLMs with Focus on Reasoning, Adaptability, Efficiency and Ethics [0.46174569259495524]
This survey paper outlines the key developments in the field of Large Language Models (LLMs)<n>The techniques that have been most effective in bridging the gap between human and machine communications include the Chain-of-Thought prompting, Instruction Tuning, and Reinforcement Learning from Human Feedback.<n>A significant focus is placed on efficiency, detailing scaling strategies, optimization techniques, and the influential Mixture-of-Experts (MoE) architecture.
arXiv Detail & Related papers (2025-06-14T05:55:19Z) - Anticipating Gaming to Incentivize Improvement: Guiding Agents in (Fair) Strategic Classification [6.660458629649826]
We explore individuals' choice between genuinely improving their qualifications ('improvement'') vs. attempting to deceive the algorithm.<n>We formulate these interactions as a Stackelberg game, where a firm deploys a (fair) classifier, and individuals strategically respond.
arXiv Detail & Related papers (2025-05-08T18:47:23Z) - Artificial Behavior Intelligence: Technology, Challenges, and Future Directions [1.5237607855633524]
This paper defines the technical framework of Artificial Behavior Intelligence (ABI)<n>ABI comprehensively analyzes and interprets human posture, facial expressions, emotions, behavioral sequences, and contextual cues.<n>It details the essential components of ABI, including pose estimation, face and emotion recognition, sequential behavior analysis, and context-aware modeling.
arXiv Detail & Related papers (2025-05-06T08:45:44Z) - Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems [132.77459963706437]
This book provides a comprehensive overview, framing intelligent agents within modular, brain-inspired architectures.<n>It explores self-enhancement and adaptive evolution mechanisms, exploring how agents autonomously refine their capabilities.<n>It also examines the collective intelligence emerging from agent interactions, cooperation, and societal structures.
arXiv Detail & Related papers (2025-03-31T18:00:29Z) - Media and responsible AI governance: a game-theoretic and LLM analysis [61.132523071109354]
This paper investigates the interplay between AI developers, regulators, users, and the media in fostering trustworthy AI systems.<n>Using evolutionary game theory and large language models (LLMs), we model the strategic interactions among these actors under different regulatory regimes.
arXiv Detail & Related papers (2025-03-12T21:39:38Z) - Do as We Do, Not as You Think: the Conformity of Large Language Models [46.23852835759767]
This paper presents a study on conformity in large language models (LLMs) driven collaborative AI systems.<n>We focus on three aspects: the existence of conformity, the factors influencing conformity, and potential mitigation strategies.<n>Our analysis delves into factors influencing conformity, including interaction time and majority size, and examines how the subject agent rationalizes its conforming behavior.
arXiv Detail & Related papers (2025-01-23T04:50:03Z) - Organizing a Society of Language Models: Structures and Mechanisms for Enhanced Collective Intelligence [0.0]
This paper introduces a transformative approach by organizing Large Language Models into community-based structures.
We investigate different organizational models-hierarchical, flat, dynamic, and federated-each presenting unique benefits and challenges for collaborative AI systems.
The implementation of such communities holds substantial promise for improve problem-solving capabilities in AI.
arXiv Detail & Related papers (2024-05-06T20:15:45Z) - LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models [75.89014602596673]
Strategic reasoning requires understanding and predicting adversary actions in multi-agent settings while adjusting strategies accordingly.
We explore the scopes, applications, methodologies, and evaluation metrics related to strategic reasoning with Large Language Models.
It underscores the importance of strategic reasoning as a critical cognitive capability and offers insights into future research directions and potential improvements.
arXiv Detail & Related papers (2024-04-01T16:50:54Z) - Adaptive Contextual Perception: How to Generalize to New Backgrounds and
Ambiguous Objects [75.15563723169234]
We investigate how vision models adaptively use context for out-of-distribution generalization.
We show that models that excel in one setting tend to struggle in the other.
To replicate the generalization abilities of biological vision, computer vision models must have factorized object vs. background representations.
arXiv Detail & Related papers (2023-06-09T15:29:54Z) - Machine Psychology [54.287802134327485]
We argue that a fruitful direction for research is engaging large language models in behavioral experiments inspired by psychology.
We highlight theoretical perspectives, experimental paradigms, and computational analysis techniques that this approach brings to the table.
It paves the way for a "machine psychology" for generative artificial intelligence (AI) that goes beyond performance benchmarks.
arXiv Detail & Related papers (2023-03-24T13:24:41Z) - ComplAI: Theory of A Unified Framework for Multi-factor Assessment of
Black-Box Supervised Machine Learning Models [6.279863832853343]
ComplAI is a unique framework to enable, observe, analyze and quantify explainability, robustness, performance, fairness, and model behavior.
It evaluates different supervised Machine Learning models not just from their ability to make correct predictions but from overall responsibility perspective.
arXiv Detail & Related papers (2022-12-30T08:48:19Z) - Causal Fairness Analysis [68.12191782657437]
We introduce a framework for understanding, modeling, and possibly solving issues of fairness in decision-making settings.
The main insight of our approach will be to link the quantification of the disparities present on the observed data with the underlying, and often unobserved, collection of causal mechanisms.
Our effort culminates in the Fairness Map, which is the first systematic attempt to organize and explain the relationship between different criteria found in the literature.
arXiv Detail & Related papers (2022-07-23T01:06:34Z) - End-to-End Learning and Intervention in Games [60.41921763076017]
We provide a unified framework for learning and intervention in games.
We propose two approaches, respectively based on explicit and implicit differentiation.
The analytical results are validated using several real-world problems.
arXiv Detail & Related papers (2020-10-26T18:39:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.