Robustly optimal dynamics for active matter reservoir computing
- URL: http://arxiv.org/abs/2505.05420v2
- Date: Mon, 26 May 2025 13:23:21 GMT
- Title: Robustly optimal dynamics for active matter reservoir computing
- Authors: Mario U. Gaimann, Miriam Klopotek,
- Abstract summary: Information processing abilities of active matter are studied in the reservoir computing paradigm to infer the future state of a chaotic signal.<n>We uncover an exceptional regime of agent dynamics that has been overlooked previously.<n>It appears robustly optimal for performance under many conditions, thus providing valuable insights into computation with physical systems more generally.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Information processing abilities of active matter are studied in the reservoir computing (RC) paradigm to infer the future state of a chaotic signal. We uncover an exceptional regime of agent dynamics that has been overlooked previously. It appears robustly optimal for performance under many conditions, thus providing valuable insights into computation with physical systems more generally. The key to forming effective mechanisms for information processing appears in the system's intrinsic relaxation abilities. These are probed without actually enforcing a specific inference goal. The dynamical regime that achieves optimal computation is located just below a critical damping threshold, involving a relaxation with multiple stages, and is readable at the single-particle level. At the many-body level, it yields substrates robustly optimal for RC across varying physical parameters and inference tasks. A system in this regime exhibits a strong diversity of dynamic mechanisms under highly fluctuating driving forces. Correlations of agent dynamics can express a tight relationship between the responding system and the fluctuating forces driving it. As this model is interpretable in physical terms, it facilitates re-framing inquiries regarding learning and unconventional computing with a fresh rationale for many-body physics out of equilibrium.
Related papers
- Dynamic Manipulation of Deformable Objects in 3D: Simulation, Benchmark and Learning Strategy [88.8665000676562]
Prior methods often simplify the problem to low-speed or 2D settings, limiting their applicability to real-world 3D tasks.<n>To mitigate data scarcity, we introduce a novel simulation framework and benchmark grounded in reduced-order dynamics.<n>We propose Dynamics Informed Diffusion Policy (DIDP), a framework that integrates imitation pretraining with physics-informed test-time adaptation.
arXiv Detail & Related papers (2025-05-23T03:28:25Z) - Dynamics and Computational Principles of Echo State Networks: A Mathematical Perspective [13.135043580306224]
Reservoir computing (RC) represents a class of state-space models (SSMs) characterized by a fixed state transition mechanism (the reservoir) and a flexible readout layer that maps from the state space.<n>This work presents a systematic exploration of RC, addressing its foundational properties such as the echo state property, fading memory, and reservoir capacity through the lens of dynamical systems theory.<n>We formalize the interplay between input signals and reservoir states, demonstrating the conditions under which reservoirs exhibit stability and expressive power.
arXiv Detail & Related papers (2025-04-16T04:28:05Z) - Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
We propose an efficient transformed Gaussian process state-space model (ETGPSSM) for scalable and flexible modeling of high-dimensional, non-stationary dynamical systems.<n>Specifically, our ETGPSSM integrates a single shared GP with input-dependent normalizing flows, yielding an expressive implicit process prior that captures complex, non-stationary transition dynamics.<n>Our ETGPSSM outperforms existing GPSSMs and neural network-based SSMs in terms of computational efficiency and accuracy.
arXiv Detail & Related papers (2025-03-24T03:19:45Z) - Reservoir Computing Generalized [0.0]
A physical neural network (PNN) has the strong potential to solve machine learning tasks and physical properties, such as high-speed computation and energy efficiency.<n> Reservoir computing (RC) is an excellent framework for implementing an information processing system with a dynamical system.<n>We propose a novel framework called reservoir computing (GRC) by turning this requirement on its head, making conventional RC a special case.
arXiv Detail & Related papers (2024-11-23T05:02:47Z) - TANGO: Time-Reversal Latent GraphODE for Multi-Agent Dynamical Systems [43.39754726042369]
We propose a simple-yet-effective self-supervised regularization term as a soft constraint that aligns the forward and backward trajectories predicted by a continuous graph neural network-based ordinary differential equation (GraphODE)
It effectively imposes time-reversal symmetry to enable more accurate model predictions across a wider range of dynamical systems under classical mechanics.
Experimental results on a variety of physical systems demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2023-10-10T08:52:16Z) - Excitatory/Inhibitory Balance Emerges as a Key Factor for RBN
Performance, Overriding Attractor Dynamics [35.70635792124142]
Reservoir computing provides a time and cost-efficient alternative to traditional learning methods.
We show that specific distribution parameters can lead to diverse dynamics near critical points.
We then evaluate performance in two challenging tasks, memorization and prediction, and find that a positive excitatory balance produces a critical point with higher memory performance.
arXiv Detail & Related papers (2023-08-02T17:41:58Z) - Controlling dynamical systems to complex target states using machine
learning: next-generation vs. classical reservoir computing [68.8204255655161]
Controlling nonlinear dynamical systems using machine learning allows to drive systems into simple behavior like periodicity but also to more complex arbitrary dynamics.
We show first that classical reservoir computing excels at this task.
In a next step, we compare those results based on different amounts of training data to an alternative setup, where next-generation reservoir computing is used instead.
It turns out that while delivering comparable performance for usual amounts of training data, next-generation RC significantly outperforms in situations where only very limited data is available.
arXiv Detail & Related papers (2023-07-14T07:05:17Z) - Random Feature Models for Learning Interacting Dynamical Systems [2.563639452716634]
We consider the problem of constructing a data-based approximation of the interacting forces directly from noisy observations of the paths of the agents in time.
The learned interaction kernels are then used to predict the agents behavior over a longer time interval.
In addition, imposing sparsity reduces the kernel evaluation cost which significantly lowers the simulation cost for forecasting the multi-agent systems.
arXiv Detail & Related papers (2022-12-11T20:09:36Z) - Dynamics with autoregressive neural quantum states: application to
critical quench dynamics [41.94295877935867]
We present an alternative general scheme that enables one to capture long-time dynamics of quantum systems in a stable fashion.
We apply the scheme to time-dependent quench dynamics by investigating the Kibble-Zurek mechanism in the two-dimensional quantum Ising model.
arXiv Detail & Related papers (2022-09-07T15:50:00Z) - Continual Learning of Dynamical Systems with Competitive Federated
Reservoir Computing [29.98127520773633]
Continual learning aims to rapidly adapt to abrupt system changes without previous dynamical regimes.
This work proposes an approach to continual learning based reservoir computing.
We show that this multi-head reservoir minimizes interference and forgetting on several dynamical systems.
arXiv Detail & Related papers (2022-06-27T14:35:50Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline
Reinforcement Learning [114.36124979578896]
We design a dynamic mechanism using offline reinforcement learning algorithms.
Our algorithm is based on the pessimism principle and only requires a mild assumption on the coverage of the offline data set.
arXiv Detail & Related papers (2022-05-05T05:44:26Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - DySMHO: Data-Driven Discovery of Governing Equations for Dynamical
Systems via Moving Horizon Optimization [77.34726150561087]
We introduce Discovery of Dynamical Systems via Moving Horizon Optimization (DySMHO), a scalable machine learning framework.
DySMHO sequentially learns the underlying governing equations from a large dictionary of basis functions.
Canonical nonlinear dynamical system examples are used to demonstrate that DySMHO can accurately recover the governing laws.
arXiv Detail & Related papers (2021-07-30T20:35:03Z) - Forced Variational Integrator Networks for Prediction and Control of
Mechanical Systems [7.538482310185133]
We show that forced variational integrator networks (FVIN) architecture allows us to accurately account for energy dissipation and external forcing.
This can result in highly-data efficient model-based control and can predict on real non-conservative systems.
arXiv Detail & Related papers (2021-06-05T21:39:09Z) - Robust Value Iteration for Continuous Control Tasks [99.00362538261972]
When transferring a control policy from simulation to a physical system, the policy needs to be robust to variations in the dynamics to perform well.
We present Robust Fitted Value Iteration, which uses dynamic programming to compute the optimal value function on the compact state domain.
We show that robust value is more robust compared to deep reinforcement learning algorithm and the non-robust version of the algorithm.
arXiv Detail & Related papers (2021-05-25T19:48:35Z) - Multiscale Simulations of Complex Systems by Learning their Effective
Dynamics [10.52078600986485]
We present a systematic framework that bridges large scale simulations and reduced order models to Learn the Effective Dynamics.
LED provides a novel potent modality for the accurate prediction of complex systems.
LED is applicable to systems ranging from chemistry to fluid mechanics and reduces computational effort by up to two orders of magnitude.
arXiv Detail & Related papers (2020-06-24T02:35:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.