論文の概要: How to Train Your Metamorphic Deep Neural Network
- arxiv url: http://arxiv.org/abs/2505.05510v1
- Date: Wed, 07 May 2025 09:01:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-12 20:40:10.00264
- Title: How to Train Your Metamorphic Deep Neural Network
- Title(参考訳): メタモルフィックなディープニューラルネットワークのトレーニング方法
- Authors: Thomas Sommariva, Simone Calderara, Angelo Porrello,
- Abstract要約: ニューラル・メタモルファス(NeuMeta)は、様々な幅と深さのニューラルネットワークを生成するための最近のパラダイムである。
我々は,NeuMetaの能力を拡張したトレーニングアルゴリズムを提案し,精度の低下を最小限に抑えたフルネットワーク・メタモルフォーシスを実現する。
- 参考スコア(独自算出の注目度): 16.734594915917647
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Metamorphosis (NeuMeta) is a recent paradigm for generating neural networks of varying width and depth. Based on Implicit Neural Representation (INR), NeuMeta learns a continuous weight manifold, enabling the direct generation of compressed models, including those with configurations not seen during training. While promising, the original formulation of NeuMeta proves effective only for the final layers of the undelying model, limiting its broader applicability. In this work, we propose a training algorithm that extends the capabilities of NeuMeta to enable full-network metamorphosis with minimal accuracy degradation. Our approach follows a structured recipe comprising block-wise incremental training, INR initialization, and strategies for replacing batch normalization. The resulting metamorphic networks maintain competitive accuracy across a wide range of compression ratios, offering a scalable solution for adaptable and efficient deployment of deep models. The code is available at: https://github.com/TSommariva/HTTY_NeuMeta.
- Abstract(参考訳): ニューラル・メタモルファス(NeuMeta)は、様々な幅と深さのニューラルネットワークを生成するための最近のパラダイムである。
Implicit Neural Representation (INR)に基づいて、NeuMetaは連続的な重み多様体を学習し、トレーニング中に見えない構成を含む圧縮モデルの直接生成を可能にする。
NeuMetaの当初の定式化は、未決定モデルの最終層にのみ有効であることが証明されており、適用範囲が限られている。
本研究では,NeuMetaの能力を拡張したトレーニングアルゴリズムを提案する。
提案手法は,ブロックワイドインクリメンタルトレーニング,INR初期化,バッチ正規化の代替戦略を含む構造化レシピに従う。
結果として生じるメタモルフィックネットワークは、幅広い圧縮比の競争精度を維持し、ディープモデルの適応性と効率的な展開のためのスケーラブルなソリューションを提供する。
コードは、https://github.com/TSommariva/HTTY_NeuMeta.comで入手できる。
関連論文リスト
- Neural Metamorphosis [72.88137795439407]
本稿では,ニューラル・メタモルファス(NeuMeta)と呼ばれる,自己変形可能なニューラルネットワークの構築を目的とした新たな学習パラダイムを提案する。
NeuMetaはニューラルネットワークの連続重み多様体を直接学習する。
75%の圧縮速度でもフルサイズの性能を維持する。
論文 参考訳(メタデータ) (2024-10-10T14:49:58Z) - Structure-Preserving Network Compression Via Low-Rank Induced Training Through Linear Layers Composition [11.399520888150468]
ローランド誘導訓練(LoRITa)と呼ばれる理論的修正手法を提案する。
LoRITaは線形層を構成することで低ランク化を促進し、特異値切り込みを用いて圧縮する。
我々は,完全連結ネットワーク上でのMNIST,視覚変換器上でのCIFAR10,畳み込みニューラルネットワーク上でのCIFAR10/100と画像ネットを用いたアプローチの有効性を示す。
論文 参考訳(メタデータ) (2024-05-06T00:58:23Z) - MixtureGrowth: Growing Neural Networks by Recombining Learned Parameters [19.358670728803336]
ほとんどのディープニューラルネットワークは、固定されたネットワークアーキテクチャの下でトレーニングされており、アーキテクチャの変更時に再トレーニングを必要とする。
これを回避するために、時間とともにランダムな重みを加えて小さなネットワークから成長させ、徐々にターゲットネットワークサイズを達成できる。
このナイーブなアプローチは、成長するプロセスに多くのノイズをもたらすため、実際には不足しています。
論文 参考訳(メタデータ) (2023-11-07T11:37:08Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
本稿では,金属人工物削減のための適応畳み込み辞書ネットワーク(ACDNet)を提案する。
我々のACDNetは、トレーニングデータを介して、アーティファクトフリーCT画像の事前を自動で学習し、入力されたCT画像ごとに表現カーネルを適応的に調整することができる。
本手法は,モデルに基づく手法の明確な解釈可能性を継承し,学習に基づく手法の強力な表現能力を維持する。
論文 参考訳(メタデータ) (2022-05-16T06:49:36Z) - FOSTER: Feature Boosting and Compression for Class-Incremental Learning [52.603520403933985]
ディープニューラルネットワークは、新しいカテゴリーを学ぶ際に破滅的な忘れ方に悩まされる。
本稿では,新たなカテゴリを適応的に学習するためのモデルとして,新しい2段階学習パラダイムFOSTERを提案する。
論文 参考訳(メタデータ) (2022-04-10T11:38:33Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Neural Network Compression Framework for fast model inference [59.65531492759006]
我々は、ニューラルネットワーク圧縮フレームワーク(NNCF)と呼ばれる、微調整によるニューラルネットワーク圧縮のための新しいフレームワークを提案する。
様々なネットワーク圧縮手法の最近の進歩を活用し、空間性、量子化、双項化などのいくつかの実装を行っている。
フレームワークは、トレーニングサンプル内に提供され、あるいは既存のトレーニングコードにシームレスに統合可能なスタンドアロンパッケージとして使用することができる。
論文 参考訳(メタデータ) (2020-02-20T11:24:01Z) - Model Fusion via Optimal Transport [64.13185244219353]
ニューラルネットワークのための階層モデル融合アルゴリズムを提案する。
これは、不均一な非i.d.データに基づいてトレーニングされたニューラルネットワーク間での"ワンショット"な知識伝達に成功していることを示す。
論文 参考訳(メタデータ) (2019-10-12T22:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。