Brain-Model Evaluations Need the NeuroAI Turing Test
- URL: http://arxiv.org/abs/2502.16238v1
- Date: Sat, 22 Feb 2025 14:16:28 GMT
- Title: Brain-Model Evaluations Need the NeuroAI Turing Test
- Authors: Jenelle Feather, Meenakshi Khosla, N. Apurva Ratan Murty, Aran Nayebi,
- Abstract summary: The classical test proposed by Alan Turing focuses on behavior, requiring that an artificial agent's behavior be indistinguishable from that of a human.<n>This position paper argues that the standard definition of the Turing Test is incomplete for NeuroAI.<n>It proposes a stronger framework called the NeuroAI Turing Test'', a benchmark that extends beyond behavior alone.
- Score: 4.525325675715108
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: What makes an artificial system a good model of intelligence? The classical test proposed by Alan Turing focuses on behavior, requiring that an artificial agent's behavior be indistinguishable from that of a human. While behavioral similarity provides a strong starting point, two systems with very different internal representations can produce the same outputs. Thus, in modeling biological intelligence, the field of NeuroAI often aims to go beyond behavioral similarity and achieve representational convergence between a model's activations and the measured activity of a biological system. This position paper argues that the standard definition of the Turing Test is incomplete for NeuroAI, and proposes a stronger framework called the ``NeuroAI Turing Test'', a benchmark that extends beyond behavior alone and \emph{additionally} requires models to produce internal neural representations that are empirically indistinguishable from those of a brain up to measured individual variability, i.e. the differences between a computational model and the brain is no more than the difference between one brain and another brain. While the brain is not necessarily the ceiling of intelligence, it remains the only universally agreed-upon example, making it a natural reference point for evaluating computational models. By proposing this framework, we aim to shift the discourse from loosely defined notions of brain inspiration to a systematic and testable standard centered on both behavior and internal representations, providing a clear benchmark for neuroscientific modeling and AI development.
Related papers
- MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Inferring Inference [7.11780383076327]
We develop a framework for inferring canonical distributed computations from large-scale neural activity patterns.
We simulate recordings for a model brain that implicitly implements an approximate inference algorithm on a probabilistic graphical model.
Overall, this framework provides a new tool for discovering interpretable structure in neural recordings.
arXiv Detail & Related papers (2023-10-04T22:12:11Z) - From internal models toward metacognitive AI [0.0]
In the prefrontal cortex, a distributed executive network called the "cognitive reality monitoring network" orchestrates conscious involvement of generative-inverse model pairs.
A high responsibility signal is given to the pairs that best capture the external world.
consciousness is determined by the entropy of responsibility signals across all pairs.
arXiv Detail & Related papers (2021-09-27T05:00:56Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
We investigate the potential of Intel's fifth generation neuromorphic chip - Loihi'
Loihi is based on the novel idea of Spiking Neural Networks (SNNs) emulating the neurons in the brain.
We find that Loihi replicates classical simulations very efficiently and scales notably well in terms of both time and energy performance as the networks get larger.
arXiv Detail & Related papers (2021-09-22T16:52:51Z) - Explanatory models in neuroscience: Part 2 -- constraint-based
intelligibility [8.477619837043214]
Computational modeling plays an increasingly important role in neuroscience, highlighting the philosophical question of how models explain.
In biological systems, many of these dependencies are naturally "top-down"
We show how the optimization techniques used to construct NN models capture some key aspects of these dependencies.
arXiv Detail & Related papers (2021-04-03T22:14:01Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
We propose a novel neural generative model inspired by the theory of predictive processing in the brain.
In a similar way, artificial neurons in our generative model predict what neighboring neurons will do, and adjust their parameters based on how well the predictions matched reality.
arXiv Detail & Related papers (2020-12-07T01:20:38Z) - A Neural Dynamic Model based on Activation Diffusion and a
Micro-Explanation for Cognitive Operations [4.416484585765028]
The neural mechanism of memory has a very close relation with the problem of representation in artificial intelligence.
A computational model was proposed to simulate the network of neurons in brain and how they process information.
arXiv Detail & Related papers (2020-11-27T01:34:08Z) - Machine Common Sense [77.34726150561087]
Machine common sense remains a broad, potentially unbounded problem in artificial intelligence (AI)
This article deals with the aspects of modeling commonsense reasoning focusing on such domain as interpersonal interactions.
arXiv Detail & Related papers (2020-06-15T13:59:47Z) - Brain-inspired self-organization with cellular neuromorphic computing
for multimodal unsupervised learning [0.0]
We propose a brain-inspired neural system based on the reentry theory using Self-Organizing Maps and Hebbian-like learning.
We show the gain of the so-called hardware plasticity induced by the ReSOM, where the system's topology is not fixed by the user but learned along the system's experience through self-organization.
arXiv Detail & Related papers (2020-04-11T21:02:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.