GaMNet: A Hybrid Network with Gabor Fusion and NMamba for Efficient 3D Glioma Segmentation
- URL: http://arxiv.org/abs/2505.05520v1
- Date: Thu, 08 May 2025 04:25:22 GMT
- Title: GaMNet: A Hybrid Network with Gabor Fusion and NMamba for Efficient 3D Glioma Segmentation
- Authors: Chengwei Ye, Huanzhen Zhang, Yufei Lin, Kangsheng Wang, Linuo Xu, Shuyan Liu,
- Abstract summary: Deep learning aids in lesion segmentation, but CNN and Transformer-based models often lack context modeling or demand heavy computation.<n>We propose GaMNet, integrating the NMamba module for global modeling and a multi-scale CNN for efficient local feature extraction.<n>Our method achieves high segmentation accuracy with fewer parameters and faster computation.
- Score: 2.3649376465820384
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gliomas are aggressive brain tumors that pose serious health risks. Deep learning aids in lesion segmentation, but CNN and Transformer-based models often lack context modeling or demand heavy computation, limiting real-time use on mobile medical devices. We propose GaMNet, integrating the NMamba module for global modeling and a multi-scale CNN for efficient local feature extraction. To improve interpretability and mimic the human visual system, we apply Gabor filters at multiple scales. Our method achieves high segmentation accuracy with fewer parameters and faster computation. Extensive experiments show GaMNet outperforms existing methods, notably reducing false positives and negatives, which enhances the reliability of clinical diagnosis.
Related papers
- A Study on the Performance of U-Net Modifications in Retroperitoneal Tumor Segmentation [45.39707664801522]
The retroperitoneum hosts a variety of tumors, including rare benign and malignant types, which pose diagnostic and treatment challenges.<n> Estimating tumor volume is difficult due to their irregular shapes, and manual segmentation is time-consuming.<n>This study evaluates U-Net enhancements, including CNN, ViT, Mamba, and xLSTM, on a new in-house CT dataset and a public organ segmentation dataset.
arXiv Detail & Related papers (2025-02-01T04:25:28Z) - MBDRes-U-Net: Multi-Scale Lightweight Brain Tumor Segmentation Network [0.0]
This study proposes the MBDRes-U-Net model using the three-dimensional (3D) U-Net framework, which integrates multibranch residual blocks and fused attention into the model.
The computational burden of the model is reduced by the branch strategy, which effectively uses the rich local features in multimodal images.
arXiv Detail & Related papers (2024-11-04T09:03:43Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.<n>This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - EM-Net: Efficient Channel and Frequency Learning with Mamba for 3D Medical Image Segmentation [3.6813810514531085]
We introduce a novel 3D medical image segmentation model called EM-Net. Inspired by its success, we introduce a novel Mamba-based 3D medical image segmentation model called EM-Net.
Comprehensive experiments on two challenging multi-organ datasets with other state-of-the-art (SOTA) algorithms show that our method exhibits better segmentation accuracy while requiring nearly half the parameter size of SOTA models and 2x faster training speed.
arXiv Detail & Related papers (2024-09-26T09:34:33Z) - MambaClinix: Hierarchical Gated Convolution and Mamba-Based U-Net for Enhanced 3D Medical Image Segmentation [6.673169053236727]
We propose MambaClinix, a novel U-shaped architecture for medical image segmentation.
MambaClinix integrates a hierarchical gated convolutional network with Mamba in an adaptive stage-wise framework.
Our results show that MambaClinix achieves high segmentation accuracy while maintaining low model complexity.
arXiv Detail & Related papers (2024-09-19T07:51:14Z) - Segmentation of Non-Small Cell Lung Carcinomas: Introducing DRU-Net and Multi-Lens Distortion [0.1935997508026988]
We are proposing a segmentation model (DRU-Net) that can provide a delineation of human non-small cell lung carcinomas.
We have used two datasets (Norwegian Lung Cancer Biobank and Haukeland University Hospital lung cancer cohort) to create our proposed model.
The proposed spatial augmentation method (multi-lens distortion) improved the network performance by 3%.
arXiv Detail & Related papers (2024-06-20T13:14:00Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
Capturing global contextual information plays a critical role in breast ultrasound (BUS) image classification.
Vision Transformers have an improved capability of capturing global contextual information but may distort the local image patterns due to the tokenization operations.
In this study, we proposed a hybrid multitask deep neural network called Hybrid-MT-ESTAN, designed to perform BUS tumor classification and segmentation.
arXiv Detail & Related papers (2023-08-04T01:19:32Z) - Building Flyweight FLIM-based CNNs with Adaptive Decoding for Object
Detection [40.97322222472642]
This work presents a method to build a Convolutional Neural Network (CNN) layer by layer for object detection from user-drawn markers.
We address the detection of Schistosomiasis mansoni eggs in microscopy images of fecal samples, and the detection of ships in satellite images.
Our CNN weighs thousands of times less than SOTA object detectors, being suitable for CPU execution and showing superior or equivalent performance to three methods in five measures.
arXiv Detail & Related papers (2023-06-26T16:48:20Z) - Learning from partially labeled data for multi-organ and tumor
segmentation [102.55303521877933]
We propose a Transformer based dynamic on-demand network (TransDoDNet) that learns to segment organs and tumors on multiple datasets.
A dynamic head enables the network to accomplish multiple segmentation tasks flexibly.
We create a large-scale partially labeled Multi-Organ and Tumor benchmark, termed MOTS, and demonstrate the superior performance of our TransDoDNet over other competitors.
arXiv Detail & Related papers (2022-11-13T13:03:09Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
We introduce the challenging new task of explainable multiple abnormality classification in volumetric medical images.
We propose a multiple instance learning convolutional neural network, AxialNet, that allows identification of top slices for each abnormality.
We then aim to improve the model's learning through a novel mask loss that leverages HiResCAM and 3D allowed regions.
arXiv Detail & Related papers (2021-11-24T01:14:33Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - DFENet: A Novel Dimension Fusion Edge Guided Network for Brain MRI
Segmentation [0.0]
We propose a novel Dimension Fusion Edge-guided network (DFENet) that can meet both of these requirements by fusing the features of 2D and 3D CNNs.
The proposed model is robust, accurate, superior to the existing methods, and can be relied upon for biomedical applications.
arXiv Detail & Related papers (2021-05-17T15:43:59Z) - Comparisons among different stochastic selection of activation layers
for convolutional neural networks for healthcare [77.99636165307996]
We classify biomedical images using ensembles of neural networks.
We select our activations among the following ones: ReLU, leaky ReLU, Parametric ReLU, ELU, Adaptive Piecewice Linear Unit, S-Shaped ReLU, Swish, Mish, Mexican Linear Unit, Parametric Deformable Linear Unit, Soft Root Sign.
arXiv Detail & Related papers (2020-11-24T01:53:39Z) - SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on
Medical Images [47.35184075381965]
We present a data augmentation method for generating synthetic medical images using cycle-consistency Generative Adversarial Networks (GANs)
The proposed GANs-based model can generate a tumor image from a normal image, and in turn, it can also generate a normal image from a tumor image.
We train the classification model using real images with classic data augmentation methods and classification models using synthetic images.
arXiv Detail & Related papers (2020-11-15T14:01:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.