GenAI in Entrepreneurship: a systematic review of generative artificial intelligence in entrepreneurship research: current issues and future directions
- URL: http://arxiv.org/abs/2505.05523v1
- Date: Thu, 08 May 2025 07:44:42 GMT
- Title: GenAI in Entrepreneurship: a systematic review of generative artificial intelligence in entrepreneurship research: current issues and future directions
- Authors: Anna Kusetogullari, Huseyin Kusetogullari, Martin Andersson, Tony Gorschek,
- Abstract summary: Generative Artificial Intelligence (GenAI) and Large Language Models (LLMs) are recognized to have significant effects on industry and business dynamics.<n>There is still a lack of knowledge of GenAI as a theme in entrepreneurship research.<n>This paper presents a systematic literature review aimed at identifying and analyzing the evolving landscape of research on the effects of GenAI on entrepreneurship.
- Score: 1.699847765835877
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative Artificial Intelligence (GenAI) and Large Language Models (LLMs) are recognized to have significant effects on industry and business dynamics, not least because of their impact on the preconditions for entrepreneurship. There is still a lack of knowledge of GenAI as a theme in entrepreneurship research. This paper presents a systematic literature review aimed at identifying and analyzing the evolving landscape of research on the effects of GenAI on entrepreneurship. We analyze 83 peer-reviewed articles obtained from leading academic databases: Web of Science and Scopus. Using natural language processing and unsupervised machine learning techniques with TF-IDF vectorization, Principal Component Analysis (PCA), and hierarchical clustering, five major thematic clusters are identified: (1) Digital Transformation and Behavioral Models, (2) GenAI-Enhanced Education and Learning Systems, (3) Sustainable Innovation and Strategic AI Impact, (4) Business Models and Market Trends, and (5) Data-Driven Technological Trends in Entrepreneurship. Based on the review, we discuss future research directions, gaps in the current literature, as well as ethical concerns raised in the literature. We highlight the need for more macro-level research on GenAI and LLMs as external enablers for entrepreneurship and for research on effective regulatory frameworks that facilitate business experimentation, innovation, and further technology development.
Related papers
- A Inteligência Artificial Generativa no Ecossistema Acadêmico: Uma Análise de Aplicações, Desafios e Oportunidades para a Pesquisa, o Ensino e a Divulgação Científica [0.0]
The rapid and disruptive integration of Generative Artificial Intelligence in higher education is reshaping fundamental academic practices.<n>Main challenges include threats to academic integrity, the risk of algorithmic bias, and the need for robust AI literacy.<n>The future of academia will not be defined by resistance to this technology, but by the ability of institutions and individuals to engage with it critically, ethically, and creatively.
arXiv Detail & Related papers (2025-07-03T18:23:18Z) - AI4Research: A Survey of Artificial Intelligence for Scientific Research [55.5452803680643]
We present a comprehensive survey on AI for Research (AI4Research)<n>We first introduce a systematic taxonomy to classify five mainstream tasks in AI4Research.<n>We identify key research gaps and highlight promising future directions.
arXiv Detail & Related papers (2025-07-02T17:19:20Z) - AI-Driven Automation Can Become the Foundation of Next-Era Science of Science Research [58.944125758758936]
The Science of Science (SoS) explores the mechanisms underlying scientific discovery.<n>The advent of artificial intelligence (AI) presents a transformative opportunity for the next generation of SoS.<n>We outline the advantages of AI over traditional methods, discuss potential limitations, and propose pathways to overcome them.
arXiv Detail & Related papers (2025-05-17T15:01:33Z) - Enterprise Architecture as a Dynamic Capability for Scalable and Sustainable Generative AI adoption: Bridging Innovation and Governance in Large Organisations [55.2480439325792]
Generative Artificial Intelligence is a powerful new technology with the potential to boost innovation and reshape governance in many industries.<n>However, organisations face major challenges in scaling GenAI, including technology complexity, governance gaps and resource misalignments.<n>This study explores how Enterprise Architecture Management can meet the complex requirements of GenAI adoption within large enterprises.
arXiv Detail & Related papers (2025-05-09T07:41:33Z) - Generative Artificial Intelligence: Evolving Technology, Growing Societal Impact, and Opportunities for Information Systems Research [1.6311895940869516]
We consider the evolving and emerging trends of AI in order to examine its present and predict its future impacts.<n>We explore the unique features of GenAI, which are rooted in the continued change from symbolism to connectionism.
arXiv Detail & Related papers (2025-02-25T16:34:23Z) - Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
A plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently.<n>Ethical concerns regarding shortcomings of these tools and potential for misuse take a particularly prominent place in our discussion.
arXiv Detail & Related papers (2025-02-07T18:26:45Z) - Transforming Business with Generative AI: Research, Innovation, Market Deployment and Future Shifts in Business Models [1.1650821883155187]
This paper explores the transformative impact of Generative AI (GenAI) on the business landscape.<n>By applying the principles of Neo-Schumpeterian economics, the research analyses how GenAI is driving a new wave of "creative destruction"<n>The deployment of GenAI also presents significant challenges, including ethical concerns, regulatory demands, and the risk of job displacement.
arXiv Detail & Related papers (2024-11-04T17:41:05Z) - The Impact of Generative Artificial Intelligence on Ideation and the performance of Innovation Teams (Preprint) [0.0]
The study applies the Knowledge Spillover Theory of Entrepreneurship to understand the effects of AI on knowledge spillover, generation and application.<n>Findings indicate that AI-augmented teams generated higher quality ideas in less time.
arXiv Detail & Related papers (2024-09-23T18:25:49Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Practical and Ethical Challenges of Large Language Models in Education:
A Systematic Scoping Review [5.329514340780243]
Large language models (LLMs) have the potential to automate the laborious process of generating and analysing textual content.
There are concerns regarding the practicality and ethicality of these innovations.
We conducted a systematic scoping review of 118 peer-reviewed papers published since 2017 to pinpoint the current state of research.
arXiv Detail & Related papers (2023-03-17T18:14:46Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions.
By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies.
arXiv Detail & Related papers (2022-11-27T13:07:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.