Fast Differentiable Modal Simulation of Non-linear Strings, Membranes, and Plates
- URL: http://arxiv.org/abs/2505.05940v2
- Date: Mon, 26 May 2025 10:47:33 GMT
- Title: Fast Differentiable Modal Simulation of Non-linear Strings, Membranes, and Plates
- Authors: Rodrigo Diaz, Mark Sandler,
- Abstract summary: Inverse modelling experiments demonstrate that our approach can recover physical parameters, including tension, stiffness, and geometry.<n>The code is released as open source to support future research and applications in differentiable physical modelling and sound synthesis.
- Score: 9.454497838382027
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Modal methods for simulating vibrations of strings, membranes, and plates are widely used in acoustics and physically informed audio synthesis. However, traditional implementations, particularly for non-linear models like the von K\'arm\'an plate, are computationally demanding and lack differentiability, limiting inverse modelling and real-time applications. We introduce a fast, differentiable, GPU-accelerated modal framework built with the JAX library, providing efficient simulations and enabling gradient-based inverse modelling. Benchmarks show that our approach significantly outperforms CPU and GPU-based implementations, particularly for simulations with many modes. Inverse modelling experiments demonstrate that our approach can recover physical parameters, including tension, stiffness, and geometry, from both synthetic and experimental data. Although fitting physical parameters is more sensitive to initialisation compared to other methods, it provides greater interpretability and more compact parameterisation. The code is released as open source to support future research and applications in differentiable physical modelling and sound synthesis.
Related papers
- Learning Stochastic Multiscale Models [1.8416014644193066]
We propose an approach to learn multiscale models in the form of differential equations directly from observational data.<n>We learn the parameters of the multiscale model using a modern forward-solver-free amortized variational inference method.<n>Our approach draws inspiration from physics-based multiscale modeling approaches, such as large-eddy simulation in fluid dynamics.
arXiv Detail & Related papers (2025-06-27T21:57:06Z) - GausSim: Foreseeing Reality by Gaussian Simulator for Elastic Objects [55.02281855589641]
GausSim is a novel neural network-based simulator designed to capture the dynamic behaviors of real-world elastic objects represented through Gaussian kernels.<n>We leverage continuum mechanics and treat each kernel as a Center of Mass System (CMS) that represents continuous piece of matter.<n>In addition, GausSim incorporates explicit physics constraints, such as mass and momentum conservation, ensuring interpretable results and robust, physically plausible simulations.
arXiv Detail & Related papers (2024-12-23T18:58:17Z) - A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANA is a software spiking neural network simulator designed to account for the properties of mixed-signal neuromorphic circuits.<n>We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software, once deployed in hardware.
arXiv Detail & Related papers (2024-09-23T11:16:46Z) - Differentiable Modal Synthesis for Physical Modeling of Planar String Sound and Motion Simulation [17.03776191787701]
We introduce a novel model for simulating motion properties of nonlinear strings.
We integrate modal synthesis and spectral modeling within physical network framework.
Empirical evaluations demonstrate that the architecture achieves superior accuracy in string motion simulation.
arXiv Detail & Related papers (2024-07-07T23:36:51Z) - Comparative Study of State-based Neural Networks for Virtual Analog Audio Effects Modeling [0.0]
This article explores the application of machine learning advancements for virtual analog modeling.
We compare State-Space models and Linear Recurrent Units against the more common Long Short-Term Memory networks.
arXiv Detail & Related papers (2024-05-07T08:47:40Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Differentiable Simulation of Soft Multi-body Systems [99.4302215142673]
We develop a top-down matrix assembly algorithm within Projective Dynamics.
We derive a differentiable control framework for soft articulated bodies driven by muscles, joint torques, or pneumatic tubes.
arXiv Detail & Related papers (2022-05-03T20:03:22Z) - Hybridized Methods for Quantum Simulation in the Interaction Picture [69.02115180674885]
We provide a framework that allows different simulation methods to be hybridized and thereby improve performance for interaction picture simulations.
Physical applications of these hybridized methods yield a gate complexity scaling as $log2 Lambda$ in the electric cutoff.
For the general problem of Hamiltonian simulation subject to dynamical constraints, these methods yield a query complexity independent of the penalty parameter $lambda$ used to impose an energy cost.
arXiv Detail & Related papers (2021-09-07T20:01:22Z) - Model-data-driven constitutive responses: application to a multiscale
computational framework [0.0]
A hybrid methodology is presented which combines classical laws (model-based), a data-driven correction component, and computational multiscale approaches.
A model-based material representation is locally improved with data from lower scales obtained by means of a nonlinear numerical homogenization procedure.
In the proposed approach, both model and data play a fundamental role allowing for the synergistic integration between a physics-based response and a machine learning black-box.
arXiv Detail & Related papers (2021-04-06T16:34:46Z) - Automatic Differentiation and Continuous Sensitivity Analysis of Rigid
Body Dynamics [15.565726546970678]
We introduce a differentiable physics simulator for rigid body dynamics.
In the context of trajectory optimization, we introduce a closed-loop model-predictive control algorithm.
arXiv Detail & Related papers (2020-01-22T03:54:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.