Learning Stochastic Multiscale Models
- URL: http://arxiv.org/abs/2506.22655v1
- Date: Fri, 27 Jun 2025 21:57:06 GMT
- Title: Learning Stochastic Multiscale Models
- Authors: Andrew F. Ilersich, Prasanth B. Nair,
- Abstract summary: We propose an approach to learn multiscale models in the form of differential equations directly from observational data.<n>We learn the parameters of the multiscale model using a modern forward-solver-free amortized variational inference method.<n>Our approach draws inspiration from physics-based multiscale modeling approaches, such as large-eddy simulation in fluid dynamics.
- Score: 1.8416014644193066
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The physical sciences are replete with dynamical systems that require the resolution of a wide range of length and time scales. This presents significant computational challenges since direct numerical simulation requires discretization at the finest relevant scales, leading to a high-dimensional state space. In this work, we propose an approach to learn stochastic multiscale models in the form of stochastic differential equations directly from observational data. Our method resolves the state on a coarse mesh while introducing an auxiliary state to capture the effects of unresolved scales. We learn the parameters of the multiscale model using a modern forward-solver-free amortized variational inference method. Our approach draws inspiration from physics-based multiscale modeling approaches, such as large-eddy simulation in fluid dynamics, while learning directly from data. We present numerical studies to demonstrate that our learned multiscale models achieve superior predictive accuracy compared to direct numerical simulation and closure-type models at equivalent resolution.
Related papers
- Hybrid Adaptive Modeling using Neural Networks Trained with Nonlinear Dynamics Based Features [5.652228574188242]
This paper introduces a novel approach that departs from standard techniques by uncovering information from nonlinear dynamical modeling and embedding it in data-based models.<n>By explicitly incorporating nonlinear dynamic phenomena through perturbation methods, the predictive capabilities are more realistic and insightful compared to knowledge obtained from brute-force numerical simulations.
arXiv Detail & Related papers (2025-01-21T02:38:28Z) - Data-Driven Stochastic Closure Modeling via Conditional Diffusion Model and Neural Operator [0.0]
Closure models are widely used in simulating complex multiscale dynamical systems such as turbulence and the earth system.<n>For systems without a clear scale, generalization deterministic and local closure models often lack enough capability.<n>We propose a datadriven modeling framework for constructing neural operator and non-local closure models.
arXiv Detail & Related papers (2024-08-06T05:21:31Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Towards Learning Stochastic Population Models by Gradient Descent [0.0]
We show that simultaneous estimation of parameters and structure poses major challenges for optimization procedures.
We demonstrate accurate estimation of models but find that enforcing the inference of parsimonious, interpretable models drastically increases the difficulty.
arXiv Detail & Related papers (2024-04-10T14:38:58Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Deep Kernel Learning of Dynamical Models from High-Dimensional Noisy
Data [1.3750624267664155]
The framework is composed of an encoder that compresses high-dimensional measurements into low-dimensional state variables.
The training of the proposed model is carried out in an unsupervised manner, not relying on labeled data.
Results show that the method can effectively denoise measurements, learn compact state representations and latent dynamical models.
arXiv Detail & Related papers (2022-08-27T09:47:44Z) - Discrepancy Modeling Framework: Learning missing physics, modeling
systematic residuals, and disambiguating between deterministic and random
effects [4.459306403129608]
In modern dynamical systems, discrepancies between model and measurement can lead to poor quantification.
We introduce a discrepancy modeling framework to identify the missing physics and resolve the model-measurement mismatch.
arXiv Detail & Related papers (2022-03-10T05:37:24Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
Two main modeling approaches often fail to meet requirements: first principles methods suffer from high bias, whereas data-driven modeling tends to have high variance.
We present physics-informed neural ordinary differential equations (PINODE), a hybrid model that combines the two modeling techniques to overcome the aforementioned problems.
Our findings are of interest for model-based control and system identification of mechanical systems.
arXiv Detail & Related papers (2020-05-29T15:10:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.