Architectural Exploration of Hybrid Neural Decoders for Neuromorphic Implantable BMI
- URL: http://arxiv.org/abs/2505.05983v1
- Date: Fri, 09 May 2025 12:15:09 GMT
- Title: Architectural Exploration of Hybrid Neural Decoders for Neuromorphic Implantable BMI
- Authors: Vivek Mohan, Biyan Zhou, Zhou Wang, Anil Bharath, Emmanuel Drakakis, Arindam Basu,
- Abstract summary: This work presents an efficient decoding pipeline for neuromorphic implantable brain-machine interfaces (Neu-iBMI)<n>We introduce a tunable event filter (EvFilter), which also functions as a spike detector (EvFilter-SPD), significantly reducing the number of events processed for decoding by 192X and 554X, respectively.
- Score: 5.76010717601678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work presents an efficient decoding pipeline for neuromorphic implantable brain-machine interfaces (Neu-iBMI), leveraging sparse neural event data from an event-based neural sensing scheme. We introduce a tunable event filter (EvFilter), which also functions as a spike detector (EvFilter-SPD), significantly reducing the number of events processed for decoding by 192X and 554X, respectively. The proposed pipeline achieves high decoding performance, up to R^2=0.73, with ANN- and SNN-based decoders, eliminating the need for signal recovery, spike detection, or sorting, commonly performed in conventional iBMI systems. The SNN-Decoder reduces computations and memory required by 5-23X compared to NN-, and LSTM-Decoders, while the ST-NN-Decoder delivers similar performance to an LSTM-Decoder requiring 2.5X fewer resources. This streamlined approach significantly reduces computational and memory demands, making it ideal for low-power, on-implant, or wearable iBMIs.
Related papers
- Neural Signal Compression using RAMAN tinyML Accelerator for BCI Applications [2.5655109786707717]
Large-scale brain recordings produce vast amounts of data that must be wirelessly transmitted for offline analysis and decoding.<n>We propose a neural signal compression scheme utilizing Convolutional Autoencoders (CAEs), which achieves a compression ratio of up to 150 for compressing local field potentials (LFPs)<n>The compressed neural data from RAMAN is reconstructed offline with superior signal-to-noise and distortion ratios (SNDR) of 22.6 dB and 27.4 dB, along with R2 scores of 0.81 and 0.94, respectively, evaluated on two monkey neural recordings.
arXiv Detail & Related papers (2025-04-09T16:09:00Z) - Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
Neuromorphic computing uses spiking neural networks (SNNs) to perform inference tasks.<n> embedding a small payload within each spike exchanged between spiking neurons can enhance inference accuracy without increasing energy consumption.<n> split computing - where an SNN is partitioned across two devices - is a promising solution.<n>This paper presents the first comprehensive study of a neuromorphic wireless split computing architecture that employs multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - Multiscale fusion enhanced spiking neural network for invasive BCI neural signal decoding [13.108613110379961]
This paper presents a novel approach utilizing a Multiscale Fusion Fusion Spiking Neural Network (MFSNN)
MFSNN emulates the parallel processing and multiscale feature fusion seen in human visual perception to enable real-time, efficient, and energy-conserving neural signal decoding.
MFSNN surpasses traditional artificial neural network methods, such as enhanced GRU, in both accuracy and computational efficiency.
arXiv Detail & Related papers (2024-09-14T09:53:30Z) - EvSegSNN: Neuromorphic Semantic Segmentation for Event Data [0.6138671548064356]
EvSegSNN is a biologically plausible encoder-decoder U-shaped architecture relying on Parametric Leaky Integrate and Fire neurons.
We introduce an end-to-end biologically inspired semantic segmentation approach by combining Spiking Neural Networks with event cameras.
Experiments conducted on DDD17 demonstrate that EvSegSNN outperforms the closest state-of-the-art model in terms of MIoU.
arXiv Detail & Related papers (2024-06-20T10:36:24Z) - A Cryogenic Memristive Neural Decoder for Fault-tolerant Quantum Error Correction [0.0]
We design and analyze a neural decoder based on an in-memory crossbar (IMC) architecture.
We develop hardware-aware re-training methods to mitigate the fidelity loss.
This work provides a pathway to scalable, fast, and low-power cryogenic IMC hardware for integrated fault-tolerant QEC.
arXiv Detail & Related papers (2023-07-18T17:46:33Z) - RN-Net: Reservoir Nodes-Enabled Neuromorphic Vision Sensing Network [7.112892720740359]
Event-based cameras are inspired by spiking and asynchronous spike representation of the biological visual system.
We propose a neural network architecture, based on simple convolution layers integrated with dynamic temporal encoding for local and global reservoirs.
RN-Net achieves the highest accuracy of 99.2% for DV128 Gesture reported to date, and one of the highest accuracy of 67.5% for DVS Lip dataset at a much smaller network size.
arXiv Detail & Related papers (2023-03-19T21:20:45Z) - An Energy-Efficient Spiking Neural Network for Finger Velocity Decoding
for Implantable Brain-Machine Interface [11.786044345820459]
We propose a novel neural-power network (SNN) decoder for implantable regression tasks.
The proposed SNN decoder achieves the same level of coefficient correlation as the state-of-the-art ANN decoder in offline finger velocity decoding tasks.
arXiv Detail & Related papers (2022-10-07T12:58:28Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction.
The desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network.
A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details.
arXiv Detail & Related papers (2022-09-29T04:06:00Z) - Graph Neural Networks for Channel Decoding [71.15576353630667]
We showcase competitive decoding performance for various coding schemes, such as low-density parity-check (LDPC) and BCH codes.
The idea is to let a neural network (NN) learn a generalized message passing algorithm over a given graph.
We benchmark our proposed decoder against state-of-the-art in conventional channel decoding as well as against recent deep learning-based results.
arXiv Detail & Related papers (2022-07-29T15:29:18Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
We propose a novel encoding scheme using -1, +1 to decompose quantized neural networks (QNNs) into multi-branch binary networks.
We validate the effectiveness of our method on large-scale image classification, object detection, and semantic segmentation tasks.
arXiv Detail & Related papers (2021-06-18T03:11:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.