Prediction of Delirium Risk in Mild Cognitive Impairment Using Time-Series data, Machine Learning and Comorbidity Patterns -- A Retrospective Study
- URL: http://arxiv.org/abs/2505.06264v1
- Date: Mon, 05 May 2025 01:21:31 GMT
- Title: Prediction of Delirium Risk in Mild Cognitive Impairment Using Time-Series data, Machine Learning and Comorbidity Patterns -- A Retrospective Study
- Authors: Santhakumar Ramamoorthy, Priya Rani, James Mahon, Glenn Mathews, Shaun Cloherty, Mahdi Babaei,
- Abstract summary: Delirium is a clinical concern characterized by high morbidity and mortality rates in patients with mild cognitive impairment (MCI)<n>This study investigates the associated risk factors for delirium by analyzing the comorbidity patterns relevant to MCI and developing a longitudinal predictive model.<n>The model demonstrated robust predictive capabilities with an AUROC of 0.93 and an AUPRC of 0.92.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Delirium represents a significant clinical concern characterized by high morbidity and mortality rates, particularly in patients with mild cognitive impairment (MCI). This study investigates the associated risk factors for delirium by analyzing the comorbidity patterns relevant to MCI and developing a longitudinal predictive model leveraging machine learning methodologies. A retrospective analysis utilizing the MIMIC-IV v2.2 database was performed to evaluate comorbid conditions, survival probabilities, and predictive modeling outcomes. The examination of comorbidity patterns identified distinct risk profiles for the MCI population. Kaplan-Meier survival analysis demonstrated that individuals with MCI exhibit markedly reduced survival probabilities when developing delirium compared to their non-MCI counterparts, underscoring the heightened vulnerability within this cohort. For predictive modeling, a Long Short-Term Memory (LSTM) ML network was implemented utilizing time-series data, demographic variables, Charlson Comorbidity Index (CCI) scores, and an array of comorbid conditions. The model demonstrated robust predictive capabilities with an AUROC of 0.93 and an AUPRC of 0.92. This study underscores the critical role of comorbidities in evaluating delirium risk and highlights the efficacy of time-series predictive modeling in pinpointing patients at elevated risk for delirium development.
Related papers
- Early Mortality Prediction in ICU Patients with Hypertensive Kidney Disease Using Interpretable Machine Learning [3.4335475695580127]
Hypertensive kidney disease (HKD) patients in intensive care units (ICUs) face high short-term mortality.<n>We developed a machine learning framework to predict 30-day in-hospital mortality among ICU patients with HKD.
arXiv Detail & Related papers (2025-07-25T00:48:23Z) - Adaptable Cardiovascular Disease Risk Prediction from Heterogeneous Data using Large Language Models [70.64969663547703]
AdaCVD is an adaptable CVD risk prediction framework built on large language models extensively fine-tuned on over half a million participants from the UK Biobank.<n>It addresses key clinical challenges across three dimensions: it flexibly incorporates comprehensive yet variable patient information; it seamlessly integrates both structured data and unstructured text; and it rapidly adapts to new patient populations using minimal additional data.
arXiv Detail & Related papers (2025-05-30T14:42:02Z) - Machine Learning-Based Model for Postoperative Stroke Prediction in Coronary Artery Disease [0.0]
This study aims to develop and evaluate a sophisticated machine learning prediction model to assess postoperative stroke risk.<n>The dataset has 70% training and 30% test. Numerical values were normalized, whereas categorical variables were one-hot encoded.<n> Logistic Regression, XGBoost, SVM, and CatBoost were employed for predictive modeling, and SHAP analysis assessed stroke risk for each variable.
arXiv Detail & Related papers (2025-03-15T02:50:32Z) - Predicting Deterioration in Mild Cognitive Impairment with Survival Transformers, Extreme Gradient Boosting and Cox Proportional Hazard Modelling [0.08399688944263844]
The paper proposes a novel approach of survival transformers and extreme gradient boosting models in predicting cognitive deterioration.
The proposed approach highlights the potential of these techniques for more accurate early detection and intervention in Alzheimer's dementia disease.
arXiv Detail & Related papers (2024-09-24T16:49:43Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Modeling Long Sequences in Bladder Cancer Recurrence: A Comparative Evaluation of LSTM,Transformer,and Mamba [0.0]
This study integrates the advantages of deep learning models for handling long-sequence data with the Cox proportional hazards model.
The LSTM-Cox model is a robust and efficient method for recurrent data analysis and feature extraction,surpassing newer models like Transformer and Mamba.
arXiv Detail & Related papers (2024-05-28T18:38:15Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Simulation-based Inference for Cardiovascular Models [43.55219268578912]
We use simulation-based inference to solve the inverse problem of mapping waveforms back to plausible physiological parameters.<n>We perform an in-silico uncertainty analysis of five biomarkers of clinical interest.<n>We study the gap between in-vivo and in-silico with the MIMIC-III waveform database.
arXiv Detail & Related papers (2023-07-26T02:34:57Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
Lung cancer is a leading cause of cancer mortality globally, highlighting the importance of understanding its mortality risks to design effective therapies.
The National Lung Screening Trial (NLST) employed computed tomography texture analysis to quantify the mortality risks of lung cancer patients.
We propose a novel Penalized Deep Partially Linear Cox Model (Penalized DPLC), which incorporates the SCAD penalty to select important texture features and employs a deep neural network to estimate the nonparametric component of the model.
arXiv Detail & Related papers (2023-03-09T15:38:16Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - WRSE -- a non-parametric weighted-resolution ensemble for predicting
individual survival distributions in the ICU [0.251657752676152]
Dynamic assessment of mortality risk in the intensive care unit (ICU) can be used to stratify patients, inform about treatment effectiveness or serve as part of an early-warning system.
We show competitive results with state-of-the-art probabilistic models, while greatly reducing training time by factors of 2-9x.
arXiv Detail & Related papers (2020-11-02T10:13:59Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.