論文の概要: Engineering Risk-Aware, Security-by-Design Frameworks for Assurance of Large-Scale Autonomous AI Models
- arxiv url: http://arxiv.org/abs/2505.06409v1
- Date: Fri, 09 May 2025 20:14:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-13 20:21:48.829556
- Title: Engineering Risk-Aware, Security-by-Design Frameworks for Assurance of Large-Scale Autonomous AI Models
- Title(参考訳): 大規模自律型AIモデルの保証のためのエンジニアリングリスク対応・セキュリティ・バイ・デザインフレームワーク
- Authors: Krti Tallam,
- Abstract要約: 本稿では,大規模自律型AIシステムを対象とした企業レベルのリスク認識型セキュリティ・バイ・デザイン手法を提案する。
敵的および運用的ストレス下でのモデル動作の証明可能な保証を提供する統一パイプラインについて詳述する。
国家安全保障、オープンソースモデルガバナンス、産業自動化におけるケーススタディは、脆弱性とコンプライアンスのオーバーヘッドの計測可能な削減を実証している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As AI models scale to billions of parameters and operate with increasing autonomy, ensuring their safe, reliable operation demands engineering-grade security and assurance frameworks. This paper presents an enterprise-level, risk-aware, security-by-design approach for large-scale autonomous AI systems, integrating standardized threat metrics, adversarial hardening techniques, and real-time anomaly detection into every phase of the development lifecycle. We detail a unified pipeline - from design-time risk assessments and secure training protocols to continuous monitoring and automated audit logging - that delivers provable guarantees of model behavior under adversarial and operational stress. Case studies in national security, open-source model governance, and industrial automation demonstrate measurable reductions in vulnerability and compliance overhead. Finally, we advocate cross-sector collaboration - uniting engineering teams, standards bodies, and regulatory agencies - to institutionalize these technical safeguards within a resilient, end-to-end assurance ecosystem for the next generation of AI.
- Abstract(参考訳): AIモデルが数十億のパラメータにスケールし、自律性を高めて運用することで、安全で信頼性の高い運用がエンジニアリンググレードのセキュリティと保証フレームワークを必要とすることを保証する。
本稿では,大規模自律型AIシステムを対象とした企業レベルのセキュリティ・バイ・デザインアプローチを提案する。
設計時のリスクアセスメントやセキュアなトレーニングプロトコルから継続的監視、自動監査ログに至るまで、統一されたパイプラインについて詳述します。
国家安全保障、オープンソースモデルガバナンス、産業自動化におけるケーススタディは、脆弱性とコンプライアンスのオーバーヘッドの計測可能な削減を実証している。
最後に、私たちは、次世代AIのためのレジリエントでエンドツーエンドの保証エコシステム内でこれらの技術的保護を制度化する、クロスセクタコラボレーション(エンジニアリングチーム、標準機関、規制機関を統一する)を提唱します。
関連論文リスト
- ThreatLens: LLM-guided Threat Modeling and Test Plan Generation for Hardware Security Verification [1.0816123715383426]
ThreatLensは、ハードウェアセキュリティ検証のためのセキュリティ脅威モデリングとテストプラン生成を自動化するマルチエージェントフレームワークである。
このフレームワークは手動検証の労力を削減し、カバレッジを高め、セキュリティ検証に対する構造化された適応可能なアプローチを保証する。
論文 参考訳(メタデータ) (2025-05-11T03:10:39Z) - AISafetyLab: A Comprehensive Framework for AI Safety Evaluation and Improvement [73.0700818105842]
我々は、AI安全のための代表的攻撃、防衛、評価方法論を統合する統合されたフレームワークとツールキットであるAISafetyLabを紹介する。
AISafetyLabには直感的なインターフェースがあり、開発者はシームレスにさまざまなテクニックを適用できる。
我々はヴィクナに関する実証的研究を行い、異なる攻撃戦略と防衛戦略を分析し、それらの比較効果に関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2025-02-24T02:11:52Z) - Reliability, Resilience and Human Factors Engineering for Trustworthy AI Systems [6.120331132009475]
私たちは、確立した信頼性とレジリエンスエンジニアリングの原則をAIシステムに統合するフレームワークを提供しています。
本稿では,AIシステムの性能管理と障害の防止,あるいは効率よく復旧する統合フレームワークを提案する。
当社のフレームワークを,OpenAIなどのプラットフォームからのシステムステータスデータを用いて,現実的なAIシステムに適用し,その実用性を示す。
論文 参考訳(メタデータ) (2024-11-13T19:16:44Z) - Safeguarding AI Agents: Developing and Analyzing Safety Architectures [0.0]
本稿では,人間チームと連携するAIシステムにおける安全対策の必要性について論じる。
我々は,AIエージェントシステムにおける安全プロトコルを強化する3つのフレームワークを提案し,評価する。
これらのフレームワークはAIエージェントシステムの安全性とセキュリティを大幅に強化することができると結論付けている。
論文 参考訳(メタデータ) (2024-09-03T10:14:51Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。