論文の概要: Reliability, Resilience and Human Factors Engineering for Trustworthy AI Systems
- arxiv url: http://arxiv.org/abs/2411.08981v1
- Date: Wed, 13 Nov 2024 19:16:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:23:41.683698
- Title: Reliability, Resilience and Human Factors Engineering for Trustworthy AI Systems
- Title(参考訳): 信頼できるAIシステムのための信頼性、レジリエンス、ヒューマンファクターエンジニアリング
- Authors: Saurabh Mishra, Anand Rao, Ramayya Krishnan, Bilal Ayyub, Amin Aria, Enrico Zio,
- Abstract要約: 私たちは、確立した信頼性とレジリエンスエンジニアリングの原則をAIシステムに統合するフレームワークを提供しています。
本稿では,AIシステムの性能管理と障害の防止,あるいは効率よく復旧する統合フレームワークを提案する。
当社のフレームワークを,OpenAIなどのプラットフォームからのシステムステータスデータを用いて,現実的なAIシステムに適用し,その実用性を示す。
- 参考スコア(独自算出の注目度): 6.120331132009475
- License:
- Abstract: As AI systems become integral to critical operations across industries and services, ensuring their reliability and safety is essential. We offer a framework that integrates established reliability and resilience engineering principles into AI systems. By applying traditional metrics such as failure rate and Mean Time Between Failures (MTBF) along with resilience engineering and human reliability analysis, we propose an integrate framework to manage AI system performance, and prevent or efficiently recover from failures. Our work adapts classical engineering methods to AI systems and outlines a research agenda for future technical studies. We apply our framework to a real-world AI system, using system status data from platforms such as openAI, to demonstrate its practical applicability. This framework aligns with emerging global standards and regulatory frameworks, providing a methodology to enhance the trustworthiness of AI systems. Our aim is to guide policy, regulation, and the development of reliable, safe, and adaptable AI technologies capable of consistent performance in real-world environments.
- Abstract(参考訳): AIシステムが産業やサービスにおける重要な運用に不可欠なものになるにつれ、信頼性と安全性の確保が不可欠である。
私たちは、確立した信頼性とレジリエンスエンジニアリングの原則をAIシステムに統合するフレームワークを提供しています。
障害率や平均時間間障害(MTBF)といった従来のメトリクスをレジリエンスエンジニアリングやヒューマン信頼性分析とともに適用することにより、AIシステムのパフォーマンスを管理し、障害の防止または効率よく回復する統合フレームワークを提案する。
我々の研究は、古典的な工学手法をAIシステムに適用し、将来の技術研究のための研究課題を概説する。
当社のフレームワークを,OpenAIなどのプラットフォームからのシステムステータスデータを用いて,現実的なAIシステムに適用し,その実用性を示す。
このフレームワークは、AIシステムの信頼性を高めるための方法論を提供する、新興のグローバル標準と規制フレームワークと一致している。
我々の目標は、現実の環境で一貫したパフォーマンスを実現することのできる、信頼性、安全性、適応可能なAI技術の開発を、ポリシー、規制、ガイドすることです。
関連論文リスト
- Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - Quantifying AI Vulnerabilities: A Synthesis of Complexity, Dynamical Systems, and Game Theory [0.0]
システム複雑度指数(SCI)、Lyapunov Exponent for AI stability(LEAIS)、Nash Equilibrium Robustness(NER)の3つの指標を導入する新しいアプローチを提案する。
SCIはAIシステムの固有の複雑さを定量化し、LEAISはその安定性と摂動に対する感受性を捉え、NERは敵の操作に対する戦略的堅牢性を評価する。
論文 参考訳(メタデータ) (2024-04-07T07:05:59Z) - No Trust without regulation! [0.0]
機械学習(ML)の性能の爆発と、その応用の可能性は、産業システムにおけるその利用を考慮し続けています。
安全と、その基準、規制、標準の問題については、いまだに片側に過度に残っています。
欧州委員会は、安全で信頼性があり、ヨーロッパの倫理的価値を尊重するAIベースのアプリケーションを統合するための、前進と強固なアプローチを構築するための基盤を築き上げた。
論文 参考訳(メタデータ) (2023-09-27T09:08:41Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - Proceedings of the Robust Artificial Intelligence System Assurance
(RAISA) Workshop 2022 [0.0]
RAISAワークショップは、堅牢な人工知能(AI)と機械学習(ML)システムの研究、開発、応用に焦点を当てる。
特定のMLアルゴリズムに関してロバストネスを研究するのではなく、システムアーキテクチャのレベルでロバストネスの保証を検討することを目的としています。
論文 参考訳(メタデータ) (2022-02-10T01:15:50Z) - Statistical Perspectives on Reliability of Artificial Intelligence
Systems [6.284088451820049]
AIシステムの信頼性に関する統計的視点を提供する。
本稿では,AI信頼性研究のためのSMART統計フレームワークを提案する。
我々は、AI信頼性のモデリングと分析における最近の発展について論じる。
論文 参考訳(メタデータ) (2021-11-09T20:00:14Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - Trustworthy AI Inference Systems: An Industry Research View [58.000323504158054]
我々は、信頼できるAI推論システムの設計、展開、運用にアプローチするための業界調査ビューを提供する。
信頼された実行環境を用いたAIシステムの機会と課題を強調します。
我々は,産業,アカデミック,政府研究者のグローバルな集団的注意を必要とする,さらなる発展の分野を概説する。
論文 参考訳(メタデータ) (2020-08-10T23:05:55Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
機械学習システムの開発は、現代的なツールで容易に実行できるが、プロセスは通常急いで、エンドツーエンドで実行される。
エンジニアリングシステムは、高品質で信頼性の高い結果の開発を効率化するために、明確に定義されたプロセスとテスト標準に従います。
我々は、機械学習の開発と展開のための実証されたシステムエンジニアリングアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-21T17:14:34Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI開発者は、責任を負うことのできる検証可能な主張をする必要がある。
このレポートは、さまざまな利害関係者がAIシステムに関するクレームの妥当性を改善するための様々なステップを示唆している。
我々は、この目的のための10のメカニズム、すなわち、組織、ソフトウェア、ハードウェアを分析し、それらのメカニズムの実装、探索、改善を目的とした推奨を行う。
論文 参考訳(メタデータ) (2020-04-15T17:15:35Z) - AAAI FSS-19: Human-Centered AI: Trustworthiness of AI Models and Data
Proceedings [8.445274192818825]
予測モデルは不確実性を認識し、信頼できる予測をもたらすことが不可欠である。
このシンポジウムの焦点は、データ品質と技術的堅牢性と安全性を改善するAIシステムであった。
広く定義された領域からの提出はまた、説明可能なモデル、人間の信頼、AIの倫理的側面といった要求に対処するアプローチについても論じた。
論文 参考訳(メタデータ) (2020-01-15T15:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。