Improved Uncertainty Quantification in Physics-Informed Neural Networks Using Error Bounds and Solution Bundles
- URL: http://arxiv.org/abs/2505.06459v2
- Date: Wed, 04 Jun 2025 00:12:39 GMT
- Title: Improved Uncertainty Quantification in Physics-Informed Neural Networks Using Error Bounds and Solution Bundles
- Authors: Pablo Flores, Olga Graf, Pavlos Protopapas, Karim Pichara,
- Abstract summary: We train Bayesian Neural Networks that provide uncertainties over the solutions to differential equation systems provided by PINNs.<n>We use available error bounds over PINNs to formulate a heteroscedastic variance that improves the uncertainty estimation.
- Score: 2.066173485843472
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-Informed Neural Networks (PINNs) have been widely used to obtain solutions to various physical phenomena modeled as Differential Equations. As PINNs are not naturally equipped with mechanisms for Uncertainty Quantification, some work has been done to quantify the different uncertainties that arise when dealing with PINNs. In this paper, we use a two-step procedure to train Bayesian Neural Networks that provide uncertainties over the solutions to differential equation systems provided by PINNs. We use available error bounds over PINNs to formulate a heteroscedastic variance that improves the uncertainty estimation. Furthermore, we solve forward problems and utilize the obtained uncertainties when doing parameter estimation in inverse problems in cosmology.
Related papers
- PINNverse: Accurate parameter estimation in differential equations from noisy data with constrained physics-informed neural networks [0.0]
Physics-Informed Neural Networks (PINNs) have emerged as effective tools for solving such problems.<n>We introduce PINNverse, a training paradigm that addresses these limitations by reformulating the learning process as a constrained differential optimization problem.<n>We demonstrate robust and accurate parameter estimation from noisy data in four classical ODE and PDE models from physics and biology.
arXiv Detail & Related papers (2025-04-07T16:34:57Z) - Conformalized Physics-Informed Neural Networks [0.8437187555622164]
We introduce Conformalized PINNs (C-PINNs) to quantify the uncertainty of PINNs.
C-PINNs utilize the framework of conformal prediction to quantify the uncertainty of PINNs.
arXiv Detail & Related papers (2024-05-13T18:45:25Z) - Correcting model misspecification in physics-informed neural networks
(PINNs) [2.07180164747172]
We present a general approach to correct the misspecified physical models in PINNs for discovering governing equations.
We employ other deep neural networks (DNNs) to model the discrepancy between the imperfect models and the observational data.
We envision that the proposed approach will extend the applications of PINNs for discovering governing equations in problems where the physico-chemical or biological processes are not well understood.
arXiv Detail & Related papers (2023-10-16T19:25:52Z) - Error-Aware B-PINNs: Improving Uncertainty Quantification in Bayesian
Physics-Informed Neural Networks [2.569295887779268]
Uncertainty Quantification (UQ) is just beginning to emerge in the context of PINNs.
We propose a framework for UQ in Bayesian PINNs (B-PINNs) that incorporates the discrepancy between the B-PINN solution and the unknown true solution.
We exploit recent results on error bounds for PINNs on linear dynamical systems and demonstrate the predictive uncertainty on a class of linear ODEs.
arXiv Detail & Related papers (2022-12-14T01:15:26Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Semi-analytic PINN methods for singularly perturbed boundary value
problems [0.8594140167290099]
We propose a new semi-analytic physics informed neural network (PINN) to solve singularly perturbed boundary value problems.
The PINN is a scientific machine learning framework that offers a promising perspective for finding numerical solutions to partial differential equations.
arXiv Detail & Related papers (2022-08-19T04:26:40Z) - Variational Neural Networks [88.24021148516319]
We propose a method for uncertainty estimation in neural networks called Variational Neural Network (VNN)
VNN generates parameters for the output distribution of a layer by transforming its inputs with learnable sub-layers.
In uncertainty quality estimation experiments, we show that VNNs achieve better uncertainty quality than Monte Carlo Dropout or Bayes By Backpropagation methods.
arXiv Detail & Related papers (2022-07-04T15:41:02Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
We propose to expand the solution interval gradually to make the PINN converge to the correct solution.
All ensemble members converge to the same solution in the vicinity of observed data.
We show experimentally that the proposed method can improve the accuracy of the found solution.
arXiv Detail & Related papers (2022-04-11T14:05:34Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.