Probing In-Context Learning: Impact of Task Complexity and Model Architecture on Generalization and Efficiency
- URL: http://arxiv.org/abs/2505.06475v1
- Date: Sat, 10 May 2025 00:22:40 GMT
- Title: Probing In-Context Learning: Impact of Task Complexity and Model Architecture on Generalization and Efficiency
- Authors: Binwen Liu, Peiyu Xu, Quan Yuan, Yihong Chen,
- Abstract summary: We investigate in-context learning (ICL) through a meticulous experimental framework that systematically varies task complexity and model architecture.<n>We evaluate four distinct models: a GPT2-style Transformer, a Transformer with FlashAttention mechanism, a convolutional Hyena-based model, and the Mamba state-space model.
- Score: 10.942999793311765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate in-context learning (ICL) through a meticulous experimental framework that systematically varies task complexity and model architecture. Extending beyond the linear regression baseline, we introduce Gaussian kernel regression and nonlinear dynamical system tasks, which emphasize temporal and recursive reasoning. We evaluate four distinct models: a GPT2-style Transformer, a Transformer with FlashAttention mechanism, a convolutional Hyena-based model, and the Mamba state-space model. Each model is trained from scratch on synthetic datasets and assessed for generalization during testing. Our findings highlight that model architecture significantly shapes ICL performance. The standard Transformer demonstrates robust performance across diverse tasks, while Mamba excels in temporally structured dynamics. Hyena effectively captures long-range dependencies but shows higher variance early in training, and FlashAttention offers computational efficiency but is more sensitive in low-data regimes. Further analysis uncovers locality-induced shortcuts in Gaussian kernel tasks, enhanced nonlinear separability through input range scaling, and the critical role of curriculum learning in mastering high-dimensional tasks.
Related papers
- Exact Learning Dynamics of In-Context Learning in Linear Transformers and Its Application to Non-Linear Transformers [1.7034813545878589]
Transformer models exhibit remarkable in-context learning (ICL)<n>Our work offers an exact dynamical model for ICL and theoretically grounded tools for analyzing complex transformer training.
arXiv Detail & Related papers (2025-04-17T13:05:33Z) - Model Hemorrhage and the Robustness Limits of Large Language Models [119.46442117681147]
Large language models (LLMs) demonstrate strong performance across natural language processing tasks, yet undergo significant performance degradation when modified for deployment.<n>We define this phenomenon as model hemorrhage - performance decline caused by parameter alterations and architectural changes.
arXiv Detail & Related papers (2025-03-31T10:16:03Z) - In-Context Linear Regression Demystified: Training Dynamics and Mechanistic Interpretability of Multi-Head Softmax Attention [52.159541540613915]
We study how multi-head softmax attention models are trained to perform in-context learning on linear data.<n>Our results reveal that in-context learning ability emerges from the trained transformer as an aggregated effect of its architecture and the underlying data distribution.
arXiv Detail & Related papers (2025-03-17T02:00:49Z) - Re-examining learning linear functions in context [1.8843687952462742]
In-context learning (ICL) has emerged as a powerful paradigm for easily adapting Large Language Models (LLMs) to various tasks.<n>We explore a simple model of ICL in a controlled setup with synthetic training data.<n>Our findings challenge the prevailing narrative that transformers adopt algorithmic approaches to learn a linear function in-context.
arXiv Detail & Related papers (2024-11-18T10:58:46Z) - Self-Supervised Learning with Generative Adversarial Networks for Electron Microscopy [0.0]
We show how self-supervised pretraining facilitates efficient fine-tuning for a spectrum of downstream tasks.
We demonstrate the versatility of self-supervised pretraining across various downstream tasks in the context of electron microscopy.
arXiv Detail & Related papers (2024-02-28T12:25:01Z) - Engineered Ordinary Differential Equations as Classification Algorithm (EODECA): thorough characterization and testing [0.9786690381850358]
We present EODECA, a novel approach at the intersection of machine learning and dynamical systems theory.
EODECA's design incorporates the ability to embed stable attractors in the phase space, enhancing reliability and allowing for reversible dynamics.
We demonstrate EODECA's effectiveness on the MNIST and Fashion MNIST datasets, achieving impressive accuracies of $98.06%$ and $88.21%$, respectively.
arXiv Detail & Related papers (2023-12-22T13:34:18Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z) - Kernel and Rich Regimes in Overparametrized Models [69.40899443842443]
We show that gradient descent on overparametrized multilayer networks can induce rich implicit biases that are not RKHS norms.
We also demonstrate this transition empirically for more complex matrix factorization models and multilayer non-linear networks.
arXiv Detail & Related papers (2020-02-20T15:43:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.