Integrating Explainable AI in Medical Devices: Technical, Clinical and Regulatory Insights and Recommendations
- URL: http://arxiv.org/abs/2505.06620v1
- Date: Sat, 10 May 2025 12:09:19 GMT
- Title: Integrating Explainable AI in Medical Devices: Technical, Clinical and Regulatory Insights and Recommendations
- Authors: Dima Alattal, Asal Khoshravan Azar, Puja Myles, Richard Branson, Hatim Abdulhussein, Allan Tucker,
- Abstract summary: This paper discusses insights and recommendations derived from an expert working group convened by the UK Medicine and Healthcare products Regulatory Agency (MHRA)<n>The group consisted of healthcare professionals, regulators, and data scientists, with a primary focus on evaluating the outputs from different AI algorithms in clinical decision-making contexts.<n> Incorporating AI methods is crucial for ensuring the safety and trustworthiness of medical AI devices in clinical settings.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There is a growing demand for the use of Artificial Intelligence (AI) and Machine Learning (ML) in healthcare, particularly as clinical decision support systems to assist medical professionals. However, the complexity of many of these models, often referred to as black box models, raises concerns about their safe integration into clinical settings as it is difficult to understand how they arrived at their predictions. This paper discusses insights and recommendations derived from an expert working group convened by the UK Medicine and Healthcare products Regulatory Agency (MHRA). The group consisted of healthcare professionals, regulators, and data scientists, with a primary focus on evaluating the outputs from different AI algorithms in clinical decision-making contexts. Additionally, the group evaluated findings from a pilot study investigating clinicians' behaviour and interaction with AI methods during clinical diagnosis. Incorporating AI methods is crucial for ensuring the safety and trustworthiness of medical AI devices in clinical settings. Adequate training for stakeholders is essential to address potential issues, and further insights and recommendations for safely adopting AI systems in healthcare settings are provided.
Related papers
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
Large Language Models (LLMs) in medicine have enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning.<n>This paper provides the first systematic review of this emerging field.<n>We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies and test-time mechanisms.
arXiv Detail & Related papers (2025-08-01T14:41:31Z) - Artificial Intelligence-Driven Clinical Decision Support Systems [5.010570270212569]
The chapter emphasizes that creating trustworthy AI systems in healthcare requires careful consideration of fairness, explainability, and privacy.<n>The challenge of ensuring equitable healthcare delivery through AI is stressed, discussing methods to identify and mitigate bias in clinical predictive models.<n>The discussion advances in an analysis of privacy vulnerabilities in medical AI systems, from data leakage in deep learning models to sophisticated attacks against model explanations.
arXiv Detail & Related papers (2025-01-16T16:17:39Z) - Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios [46.729092855387165]
We study the choice of the backbone LLM for medical AI agents, which is the foundation for the agent's overall reasoning and action generation.<n>Our findings demonstrate o1's ability to enhance diagnostic accuracy and consistency, paving the way for smarter, more responsive AI tools.
arXiv Detail & Related papers (2024-11-16T18:19:53Z) - Clinicians' Voice: Fundamental Considerations for XAI in Healthcare [0.0]
We conducted semi-structured interviews with clinicians to discuss their thoughts, hopes, and concerns.<n> Clinicians from our sample generally think positively about developing AI-based tools for clinical practice.<n>They have concerns about how these will fit into their workflow and how it will impact clinician-patient relations.
arXiv Detail & Related papers (2024-11-07T16:47:06Z) - Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - Designing Interpretable ML System to Enhance Trust in Healthcare: A Systematic Review to Proposed Responsible Clinician-AI-Collaboration Framework [13.215318138576713]
The paper reviews interpretable AI processes, methods, applications, and the challenges of implementation in healthcare.
It aims to foster a comprehensive understanding of the crucial role of a robust interpretability approach in healthcare.
arXiv Detail & Related papers (2023-11-18T12:29:18Z) - FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare [73.78776682247187]
Concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI.
This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare.
arXiv Detail & Related papers (2023-08-11T10:49:05Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
We consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state.
We employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability.
Our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
arXiv Detail & Related papers (2023-02-11T18:07:11Z) - Bridging the gap between AI and Healthcare sides: towards developing
clinically relevant AI-powered diagnosis systems [18.95904791202457]
We hold a clinically valuable AI-envisioning workshop among Japanese Medical Imaging experts, physicians, and generalists in Healthcare/Informatics.
Then, a questionnaire survey for physicians evaluates our pathology-aware Generative Adrial Network (GAN)-based image augmentation projects in terms of Data Augmentation and physician training.
arXiv Detail & Related papers (2020-01-12T12:45:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.