AI-Powered Anomaly Detection with Blockchain for Real-Time Security and Reliability in Autonomous Vehicles
- URL: http://arxiv.org/abs/2505.06632v1
- Date: Sat, 10 May 2025 12:53:28 GMT
- Title: AI-Powered Anomaly Detection with Blockchain for Real-Time Security and Reliability in Autonomous Vehicles
- Authors: Rathin Chandra Shit, Sharmila Subudhi,
- Abstract summary: We develop a new framework that combines the power of Artificial Intelligence (AI) for real-time anomaly detection with blockchain technology to detect and prevent any malicious activity.<n>This framework employs a decentralized platform for securely storing sensor data and anomaly alerts in a blockchain ledger for data incorruptibility and authenticity.<n>This makes the AV system more resilient to attacks from both cyberspace and hardware component failure.
- Score: 1.1797787239802762
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous Vehicles (AV) proliferation brings important and pressing security and reliability issues that must be dealt with to guarantee public safety and help their widespread adoption. The contribution of the proposed research is towards achieving more secure, reliable, and trustworthy autonomous transportation system by providing more capabilities for anomaly detection, data provenance, and real-time response in safety critical AV deployments. In this research, we develop a new framework that combines the power of Artificial Intelligence (AI) for real-time anomaly detection with blockchain technology to detect and prevent any malicious activity including sensor failures in AVs. Through Long Short-Term Memory (LSTM) networks, our approach continually monitors associated multi-sensor data streams to detect anomalous patterns that may represent cyberattacks as well as hardware malfunctions. Further, this framework employs a decentralized platform for securely storing sensor data and anomaly alerts in a blockchain ledger for data incorruptibility and authenticity, while offering transparent forensic features. Moreover, immediate automated response mechanisms are deployed using smart contracts when anomalies are found. This makes the AV system more resilient to attacks from both cyberspace and hardware component failure. Besides, we identify potential challenges of scalability in handling high frequency sensor data, computational constraint in resource constrained environment, and of distributed data storage in terms of privacy.
Related papers
- CANDoSA: A Hardware Performance Counter-Based Intrusion Detection System for DoS Attacks on Automotive CAN bus [45.24207460381396]
This paper presents a novel Intrusion Detection System (IDS) designed for the Controller Area Network (CAN) environment.<n>A RISC-V-based CAN receiver is simulated using the gem5 simulator, processing CAN frame payloads with AES-128 encryption as FreeRTOS tasks.<n>Results indicate that this approach could significantly improve CAN security and address emerging challenges in automotive cybersecurity.
arXiv Detail & Related papers (2025-07-19T20:09:52Z) - Blockchain Powered Edge Intelligence for U-Healthcare in Privacy Critical and Time Sensitive Environment [0.559239450391449]
We propose an autonomous computing model for privacy-critical and time-sensitive health applications.<n>The system supports continuous monitoring, real-time alert notifications, disease detection, and robust data processing and aggregation.<n>A secure access scheme is defined to manage both off-chain and on-chain data sharing and storage.
arXiv Detail & Related papers (2025-05-31T06:58:52Z) - A Joint Reconstruction-Triplet Loss Autoencoder Approach Towards Unseen Attack Detection in IoV Networks [6.229535970620059]
We present an unsupervised autoencoder method trained entirely on benign network data for unseen attack detection in IoV networks.<n>We show that our method performs robustly for all unseen attack types, with roughly 99% accuracy on benign data and between 97% and 100% performance on anomaly data.
arXiv Detail & Related papers (2025-05-27T19:40:57Z) - A Scalable Hierarchical Intrusion Detection System for Internet of Vehicles [1.6017263994482716]
Internet of Vehicles (IoV) is prone to various cyber threats, ranging from spoofing and Distributed Denial of Services (DDoS) attacks to malware.<n>To safeguard the IoV ecosystem from intrusions, malicious activities, policy violations, intrusion detection systems (IDS) play a critical role by continuously monitoring and analyzing network traffic to identify and mitigate potential threats in real-time.<n>This paper proposes an effective hierarchical classification framework tailored for IoV networks.
arXiv Detail & Related papers (2025-05-22T04:30:26Z) - Explainable Machine Learning for Cyberattack Identification from Traffic Flows [5.834276858232939]
We simulate cyberattacks in a semi-realistic environment, using a traffic network to analyze disruption patterns.<n>We develop a deep learning-based anomaly detection system, demonstrating that Longest Stop Duration and Total Jam Distance are key indicators of compromised signals.<n>This work enhances AI-driven traffic security, improving both detection accuracy and trustworthiness in smart transportation systems.
arXiv Detail & Related papers (2025-05-02T17:34:14Z) - Towards Robust Stability Prediction in Smart Grids: GAN-based Approach under Data Constraints and Adversarial Challenges [53.2306792009435]
We introduce a novel framework to detect instability in smart grids by employing only stable data.<n>It relies on a Generative Adversarial Network (GAN) where the generator is trained to create instability data that are used along with stable data to train the discriminator.<n>Our solution, tested on a dataset composed of real-world stable and unstable samples, achieve accuracy up to 97.5% in predicting grid stability and up to 98.9% in detecting adversarial attacks.
arXiv Detail & Related papers (2025-01-27T20:48:25Z) - VMGuard: Reputation-Based Incentive Mechanism for Poisoning Attack Detection in Vehicular Metaverse [52.57251742991769]
vehicular Metaverse guard (VMGuard) protects vehicular Metaverse systems from data poisoning attacks.<n>VMGuard implements a reputation-based incentive mechanism to assess the trustworthiness of participating SIoT devices.<n>Our system ensures that reliable SIoT devices, previously missclassified, are not barred from participating in future rounds of the market.
arXiv Detail & Related papers (2024-12-05T17:08:20Z) - IDU-Detector: A Synergistic Framework for Robust Masquerader Attack Detection [3.3821216642235608]
In the digital age, users store personal data in corporate databases, making data security central to enterprise management.
Given the extensive attack surface, assets face challenges like weak authentication, vulnerabilities, and malware.
We introduce the IDU-Detector, integrating Intrusion Detection Systems (IDS) with User and Entity Behavior Analytics (UEBA)
This integration monitors unauthorized access, bridges system gaps, ensures continuous monitoring, and enhances threat identification.
arXiv Detail & Related papers (2024-11-09T13:03:29Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - A Hybrid Deep Learning Anomaly Detection Framework for Intrusion
Detection [4.718295605140562]
We propose a three-stage deep learning anomaly detection based network intrusion attack detection framework.
The framework comprises an integration of unsupervised (K-means clustering), semi-supervised (GANomaly) and supervised learning (CNN) algorithms.
We then evaluated and showed the performance of our implemented framework on three benchmark datasets.
arXiv Detail & Related papers (2022-12-02T04:40:54Z) - MMRNet: Improving Reliability for Multimodal Object Detection and
Segmentation for Bin Picking via Multimodal Redundancy [68.7563053122698]
We propose a reliable object detection and segmentation system with MultiModal Redundancy (MMRNet)
This is the first system that introduces the concept of multimodal redundancy to address sensor failure issues during deployment.
We present a new label-free multi-modal consistency (MC) score that utilizes the output from all modalities to measure the overall system output reliability and uncertainty.
arXiv Detail & Related papers (2022-10-19T19:15:07Z) - Smart and Secure CAV Networks Empowered by AI-Enabled Blockchain: Next
Frontier for Intelligent Safe-Driving Assessment [17.926728975133113]
Securing a safe-driving circumstance for connected and autonomous vehicles (CAVs) continues to be a widespread concern.
We propose a novel framework of algorithm-enabled intElligent Safe-driving assessmenT (BEST) to offer a smart and reliable approach.
arXiv Detail & Related papers (2021-04-09T19:08:34Z) - Multi-Source Data Fusion for Cyberattack Detection in Power Systems [1.8914160585516038]
We show that fusing information from multiple data sources can help identify cyber-induced incidents and reduce false positives.
We perform multi-source data fusion for training IDS in a cyber-physical power system testbed.
Results are presented using the proposed data fusion application to infer False Data and Command injection-based Man-in- The-Middle attacks.
arXiv Detail & Related papers (2021-01-18T06:34:45Z) - Lightweight Collaborative Anomaly Detection for the IoT using Blockchain [40.52854197326305]
Internet of things (IoT) devices tend to have many vulnerabilities which can be exploited by an attacker.
Unsupervised techniques, such as anomaly detection, can be used to secure these devices in a plug-and-protect manner.
We present a distributed IoT simulation platform, which consists of 48 Raspberry Pis.
arXiv Detail & Related papers (2020-06-18T14:50:08Z) - Certifiable Robustness to Adversarial State Uncertainty in Deep
Reinforcement Learning [40.989393438716476]
Deep Neural Network-based systems are now the state-of-the-art in many robotics tasks, but their application in safety-critical domains remains dangerous without formal guarantees on network robustness.
Small perturbations to sensor inputs are often enough to change network-based decisions, which was recently shown to cause an autonomous vehicle to swerve into another lane.
This work leverages research on certified adversarial robustness to develop an online certifiably robust for deep reinforcement learning algorithms.
arXiv Detail & Related papers (2020-04-11T21:36:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.